Objective: We aimed to assess and validate the radiologic and clinical factors that were associated with recurrence and survival after curative surgery for heterogeneous targetoid primary liver malignancies in patients with chronic liver disease and to develop scoring systems for risk stratification. Materials and Methods: This multicenter retrospective study included 197 consecutive patients with chronic liver disease who had a single targetoid primary liver malignancy (142 hepatocellular carcinomas, 37 cholangiocarcinomas, 17 combined hepatocellular carcinoma-cholangiocarcinomas, and one neuroendocrine carcinoma) identified on preoperative gadoxetic acid-enhanced MRI and subsequently surgically removed between 2010 and 2017. Of these, 120 patients constituted the development cohort, and 77 patients from separate institution served as an external validation cohort. Factors associated with recurrence-free survival (RFS) and overall survival (OS) were identified using a Cox proportional hazards analysis, and risk scores were developed. The discriminatory power of the risk scores in the external validation cohort was evaluated using the Harrell C-index. The Kaplan-Meier curves were used to estimate RFS and OS for the different risk-score groups. Results: In RFS model 1, which eliminated features exclusively accessible on the hepatobiliary phase (HBP), tumor size of 2-5 cm or > 5 cm, and thin-rim arterial phase hyperenhancement (APHE) were included. In RFS model 2, tumors with a size of > 5 cm, tumor in vein (TIV), and HBP hypointense nodules without APHE were included. The OS model included a tumor size of > 5 cm, thin-rim APHE, TIV, and tumor vascular involvement other than TIV. The risk scores of the models showed good discriminatory performance in the external validation set (C-index, 0.62-0.76). The scoring system categorized the patients into three risk groups: favorable, intermediate, and poor, each with a distinct survival outcome (all log-rank p < 0.05). Conclusion: Risk scores based on rim arterial enhancement pattern, tumor size, HBP findings, and radiologic vascular invasion status may help predict postoperative RFS and OS in patients with targetoid primary liver malignancies.