Kim, Seung-Jo;Kim, Kyeong-Su;Cho, Jin-Yeon
97
In this paper, a finite viscoelastic continuum model for rubber and its finite element analysis are presented. This finite viscoelatic model based on continuum mechanics is an extended model of Johnson and Wuigley's 1-D model. In this extended model, continuum based kinematic measures are rigorously defied and by using this kinematic measures, elastic stage law and flow rule are introduced. In kinematics, three configuration are introduced. In kinematics, three configuration are introduced. They are reference, current and virtual visco configurations. In elastic state law, it is assumed that at a certain time, there exists an elastic potential which describes the recoverable elastic energy. From this elastic potential, elastic state law is derived. The proposed flow rule is based on phenomenological observation. The flow rule gives precise relaxation response. In finite element approximation, mixed Lagrangian description is used, where total and similar method of updated Lagrangian descriptions are used together. This approach reduces the numerical job and gives simple nonlinear syatem of equations. To satisfy the incompressible condition, penalty-type modified Mooney-Rivlin energy function is adopted. By this method nearly incompressible condition is obtain the virtual visco configuration. For verification, uniaxial stretch tests are simulated for various stretch rates. The simulated results show good agreement with experiments. As a practical experiments. As a preactical example, pressurized rubber plate is simulated. The result shows finite viscoelastic effects clearly.