International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
Korean Society of Ocean Engineers
- Annual
- /
- 1229-1668(pISSN)
Domain
- Construction/Transportation > Maritime Safety/Transportation Technology
- Construction/Transportation > Water Engineering System
Volume 6 Issue 1
-
This study presents the results of series of studies, which are mainly devoted to the application of wavelet transforms to various problems in ocean engineering. Both continuous and discrete wavelet transforms were used. These studies attempted to solve detection of wave directionality, detection of wave profile, and decoupling of the rolling component from free roll decay tests. The results of these analysis, using wavelet transform, demonstrated that the wavelet transform can be a useful tool in analyzing many problems in the filed of ocean engineering.
-
The interaction of monochromatic incident waves with a submerged horizontal porous membrane is investigated in the context of two-dimensional linear hydro-elastic theory. It is assumed that the membrane is made of material with very fine pores so that the normal velocity of the fluid passing through the porous membrane is linearly proportional to the pressure difference between two sides of the membrane (e.g. Darcy's law). Using the Eigen-function expansion method, the wave-blocking performance of a submerged horizontal porous membrane is tested with various membrane tensions, porosities, lengths, and submerged depths. It is found that an optimal combination of design parameters exists for given water depth and wave characteristics.
-
A common feature in the three-dimensional numerical model experiments of coastal discharge with simplified model and idealized external forcings is investigated. The velocity fields due to the buoyancy and flaw flux, are spreaded radiately and the surface velocites are much greater than the homegeneous discharges. The coastal dischargd due to the Coriolis force and flaw flux are shaped a anticyclical gyre (clockwise) and determined the scale of the gyre in the coastal zone, respectively. The bottom topography restricts a outward extention of the coastal fronts and it accelerates a southward flow.
-
This research aims at investigation of accuracy potential of RTK(Real-Time Kinematic) GPS in combination with Echo Sounder(E/S) for the coastal mapping. Apart from this purpose, the accuracy of ambiguity resolution with the OTF(On The Fly) method was tested with respect to the initialization time. The result shows that the accuracy is better than 1cm with 5-minute initialization in the distance of 10km baseline. The seaside topography was measured by the RTK GPS only, on the other hand the seafloor topography was surveyed in combination of RTK GPS and E/S. Comparing to the volume of seaside measured by RTK GPS and digital topographical map, the difference of only 2% was achieved. This indicates that the coastal mapping. As a result, it has been revealed that every possible noise in surveying could be corrected and the accuracy could be improved. The accuracy of GPS data acquired in real time was as good as that acquired by post processing. It is expected that it will be useful for the analysis of coastal geographic characteristics because DTM(Digital Terrain Model) can be also constructed for the harbor reclamation, the dredging, and the variation of soil movement in a river.
-
This paper describes vibration control of a suspended system using wave absorption method. A moving multiple-pendulum system and a moving wire-and-load system are treated. The wire-and-load system is extended to a model crane system that has a motor system to roll up and down the suspended mass like a real crane. The same program with different parameter values controls these three systems. Both numerical simulation and experiment have been conducted, and the present control method has shown to be quite effective.
-
This paper presents the results of a post-tensioning test and analysis of a pyramidal unit structure that is basic element for space structures. The behavior characteristics was analyzed and compared with the numerical analysis and the mechanism in test model was confirmed with geometrical analysis. The results of this paper show that the behaviors of space structures can be predicted in multi-directional Mero joint system. And the authors suggest the possibility of erection and shaping formation with comparatively small post-tensioning, and space structure with the mechanism should consider the nonlinear behavior due to large deformation.
-
If the accelerometers are used in measuring the response, the absolute values of the velocity and displacement are not usually obtainable because their initial values are not accounted for in the integration of the acceleration response. A new dynamic response conversion algorithm of both the time domain and the frequency domain is proposed for the problem in estimating the displacement data by defining the transformed responses. In this algorithm, the displacement response can be obtained from the measured acceleration records by integration without requiring the knowledge of the initial velocity and displacement information. The applicability of the technique is tested by an example problem using the real bridge's superstructure under several cases of moving load. In the response conversion procedure of the frequency domain, the identified response according to the frequency can be estimated by changing over the limits of integration. If the reliability of the identified responses is ensured, it is expected that the proposed method for estimating the impact factor can be useful in the bridge's dynamic test. This method can be useful in those practical cases when the direct measurement of the displacement is difficult as in the dynamic studies of huge structure.
-
This paper has developed an efficient nonlinear finite element method that covers both initial deformations and initial stresses of general distribution in calculating the ultimate strength of ring-stiffened cylinders. The developed method and two widely-used commercial codes (NASTRAN and ABAQUS) were simultaneously applied to the same analysis model within the extent of those commercial codes' coverage to check the validity of the present method. After the validity check, it was used for parametric studies for more general cases of initial stress distribution, which produced some useful information about the imperfection sensitivity of the ultimate strength of ring-stiffened cylinders.
-
This paper proposes an optimum design method of structural and control systems, using a 2-D truss structure as an example. The structure is subjected to initial static loads and disturbances. For the structure, a FEM model is formed. Using modal transformation, the equation of motion is transformed into modal coordinates, in order to decrease D.O.F. of the FEM model. To suppress the effect of the disturbances, the structure is controlled by an output feedback
$H_{\infty}$ controller. The design variables of the combined optimal design of the control-structure systems are the cross sectional areas of truss members. The structural objective function is the structural weight. The control objective function is the$H_{\infty}$ norm, the performance index of control. The second structural objective function is the energy of the response related to the initial state, which is derived from the time integration of the quadratic form of the state in the closed-loop system. In a numerical example, simulations have been perform. Through the consideration of structural weight and$H_{\infty}$ norm, an advantage of the combined optimum design of structural and control systems is shown. Moreover, since the performance index of control is almost nearly optimiz, we can acquire better design of structural strength. -
Recent deepwater offshore structures in the Gulf of Mexico utilize butt welded tubular joints. Application of a welded tubular joint includes tendons, production risers, and steel catenary risers. Fatigue life assessment of these joints becomes more critical, as the structures to which they are attached are allowed to undergo cyclic and sometimes large displacements around an anchored position. Estimation of the fatigue behavior of these tubular members in the design stage is generally conducted by using S-N curves, as specified in the codes and standards. Applying the stress concentration factor of the welded structure to the S-N approach often results in a very conservative assessment, because the stress field acting on the tubular has a non-uniform distribution through the thickness. Fatigue life analysis using fracture mechanics has been applied in the design of the catenary risers. This technology enables the engineer to establish proper requirements on weld quality and inspection acceptance criteria to assure satisfactory structural integrity during its design life. It also provides guidance on proper design curves and a methodology for accounting for the effects of non-uniform stress distribution through the wall thickness. Still, there is inconsistency when designing tubular joints using a conventional S-N approach and when specifying weld flaw acceptance criteria using fracture mechanics approach. This study developed fatigue curves that are consistent with both the S-N approach and the fracture mechanics approach. Accounting for non-uniform stress distribution and threshold stress intensity factor were key parameters in relating both approaches. A series of S-N curves, generated from the fracture mechanics approach, were compared to the existing S-N curves. For flat plate butt joint, the S-N curve generated from fracture mechanics matches with the IIW class 100 curve when initial crack depth was 0.5 mm (0.02). The new curves for tubular joint agree very well with the experimental results. The comparison also indicated the degree of conservatism built into the API X design curve.
-
Underwater wet arc welds were experimentally performed on the KR-RA steel plate as base metal by using four different types of flux coated electrodes: KT33, UWEE, UWCS, and TN20. UWEE, the individually designed flux coated underwater electrode, had good operability when compared with other domestic terrestrial electrodes, and imported goods. The hardness value and the portion of martensite of HAZ were increased, by using a rapid cooling rate, Mechanical properties were also examined experimentally with a multi-pass butt-welding specimen test. The individually designed flux coated electrode UWEE could be used in practice for underwater wet welds.