Ko, Woo-Suk;Yoon, Sun-Young;Kim, Jae-Won;Lee, Choong-Eun;Han, Mi-Young
303
Grb2, which is composed of a Src homology 2 (SH2) domain and two Src homology 3 (SH3) domains, is known to serve as an adaptor protein in signaling for Ras activation. Thus, a blocker of the Grb2 interactions with other proteins can be a potential candidate for an anticancer drug. In this study, we have developed a high throughput screening method for SH3 domain binding ligands and blockers. Firstly, we made and purified the glutathione S-transferase (GST)-fusion proteins with the Grb2 SH2 and SH3 domains, and the entire Grb2. This method measures the binding of a biotin-labeled oligopeptide, derived from a Grb2/SH3 binding motif in the hSos, to the GST-fusion proteins, which are precoated as glutathione S-transferase fusion protein on a solid phase. When $1\;{\mu}g$ of each fusion protein was used to coat the wells, both N- and C- terminal SH3 the domains as well as the whole of Grb2 were able to interact with the biotin-conjugated ligand peptide, while the SH2 domain and GST alone showed no binding affinity. Although N- and C- terminal SH3 domains showed an increase of binding to the ligand peptide in proportion to the amount of peptide, the GST fusion protein with Grb2 demonstrated much higher binding affinity. GST-Grb2 coating on the solid phase showed a saturation curve; 66 and 84% of the maximal binding was observed at 100 and 300 ng/$100\;{\mu}l$, respectively. This binding assay system was peptide sequence-specific, showing a dose-dependent inhibition with the unlabeled peptide of SH3 binding motif. Several other peptides, such as SH2 domain binding motifs and PTB domain binding motif, were ineffective to inhibit the binding to the biotin-conjugated ligand peptide. These results suggest that our method may be useful to screen for new anticancer drug candidates which can block the signaling pathways mediated by SH3 domain binding.