In the last decade, the use of Building Information Modeling (BIM) as a new technology has been applied with traditional Computer-aided design implementations in an increasing number of architecture, engineering, and construction projects and applications. Its employment alongside construction management, can be a valuable tool in helping move these activities and projects forward in a more efficient and time-effective manner. The traditional stakeholders, i.e., Owner, A/E and the Contractor are involved in this BIM system that is used in almost every activity of construction projects, such as design, cost estimate and scheduling. This article extracts major features of the application of BIM from perspective of participating BIM components, along with the different phrases, and applies to them a logistic analysis using a fuzzy performance tree, quantifying these phrases to judge the effectiveness of the BIM techniques employed. That is to say, these fuzzy performance trees with fuzzy logic concepts can properly translate the linguistic rating into numeric expressions, and are thus employed in evaluating the influence of BIM applications as a mathematical process. The rotational fuzzy models are used to represent the membership functions of the performance values and their corresponding weights. Illustrations of the use of this fuzzy BIM performance tree are presented in the study for the uninitiated users. The results of these processes are an evaluation of BIM project performance as highly positive. The quantification of the performance ratings for the individual factors is a significant contributor to this assessment, capable of parsing vernacular language into numerical data for a more accurate and precise use in performance analysis. It is hoped that fuzzy performance trees and fuzzy set analysis can be used as a tool for the quality and risk analysis for other construction techniques in the future. Baldwin's rotational models are used to represent the membership functions of the fuzzy sets. Three scenarios are presented using fuzzy MEAN, AND and OR gates from the lowest to intermediate levels of the tree, and fuzzy SUM gate to relate the intermediate level to the top component of the tree, i.e., BIM application final performance. The use of fuzzy MEAN for lower levels and fuzzy SUM gates to reach the top level suggests the most realistic and accurate results. The methodology (fuzzy performance tree) described in this paper is appropriate to implement in today's construction industry when limited objective data is presented and it is heavily relied on experts' subjective judgment.