In this paper, the authors establish the conditions for the extinction of solutions, in finite time, of the fast diffusive p-Laplace equation $u_t=div({\mid}{\nabla}u{\mid}^{p-2}{\nabla}u)+a{\int}_{\Omega}u^q(y,t)dy$, 1 < p < 2, in a bounded domain ${\Omega}{\subset}R^N$ with $N{\geq}1$. More precisely, it is shown that if q > p-1, any solution vanishes in finite time when the initial datum or the coefficient a or the Lebesgue measure of the domain is small, and if 0 < q < p-1, there exists a solution which is positive in ${\Omega}$ for all t > 0. For the critical case q = p-1, whether the solutions vanish in finite time or not depends crucially on the value of $a{\mu}$, where ${\mu}{\int}_{\Omega}{\phi}^{p-1}(x)dx$ and ${\phi}$ is the unique positive solution of the elliptic problem -div(${\mid}{\nabla}{\phi}{\mid}^{p-2}{\nabla}{\phi}$) = 1, $x{\in}{\Omega}$; ${\phi}(x)$=0, $x{\in}{\partial}{\Omega}$. This is a main difference between equations with local and nonlocal sources.