Special Issue of the Society of Naval Architects of Korea (대한조선학회 특별논문집)
The Society of Naval Architects of Korea
- 2년1회간
Domain
- Machinery > Naval Architecture/Ocean Engineering
2008.09a
-
This report contains the results of structural analysis for the verification of the optimum offset range on the top of T-Bar with stiffener and BKT using at DSME Offset range as
$6.0{\sim}10.0mm$ based on the 3-D FE analysis and experimental results of angie type stiffener as described in Annex 1 has been used as yard standard over ten (10) years under all Classification approval. Recently, Owner and Class have requested the confirmation for the misalignment based on the Yard's Standard so that a couple of locations for LNGC and LPGC has been investigated the structural strength by FE method using the offset ranges from 0.0 to 18.0 mm. -
The proper docking block arrangement, loading condition and structural reinforcement are required to ensure structural safety of ship, when she is in re-docking and launching for inspection or repair. The large reaction force due to narrow bottom tangent area, heavy weight and ballast loading are occurred at aft body and fore body of ship. Especially, in case of LNGC, the strength evaluation is necessary for cargo hold areas including mid-body because tank hydro test is performed in dry-dock. The analysis results and experiences to confirm structural safety for docking of conventional LNGC
$(138K{\sim}151.7K)$ are introduced in this paper. -
Recent growth in LNG market has led dramatic increase in new buildings of LNG carriers and several large LNG carriers are now being constructed by shipbuilders in Korea. Large size LNG carriers has brought keen concerns on the issue regarding safety of cargo containment systems and sloshing impact load which is the critical source of loads on the membrane type containment systems. Up to the present, the best way to properly assess sloshing impact pressures on surrounding walls is a model testing for wide-ranged excitation conditions. These impact pressures obtained from model tests sometimes need to be interpreted to full-scale values and in the near future this necessity will be strengthened for more rigorous and direct safety assessment of LNG cargo containment system. In this paper, a basic experimental study is carried out with two different sized, 2D identically shaped model tanks excited in simple translational motions. Relationships between pressures of different sized model tanks are investigated Model tanks are filled with fresh water and equipped with same sized pressure sensors.
-
Hinged cross bar which is fitted for buyer's special item in cell guide of container vessels has an advantage of efficiency on container loading. In this paper, the main focus is to confirm the structural adequacy of hinged cross bar supporting structure in cell guide under the considered loading condition for container vessel.
-
The evidence of the Cargo tank volume is very important between Buyer and Seller for agreement each other for LNG Ship. CTS(Custody Transfer System) Radar type level gauging sensor to be measured for cargo volume. The data of Trim & List sensor to be compensated for measuring data which is original data of the CTS sensor. The latest days, the Buyer would have posed a problem both the location and the accuracy of trim/list sensor specially neared final stage of the ship's delivery. So, we would like to report the introducing to the trim/list sensor and the confirmation of actual location for the trim/list sensor.
-
The application of the electric propulsion system to the vessels has recently become common due to the latest technology for controlling the electric motors with variable speed. However it has been found that harmonic distortion exists in the electric propulsion system, which consists of an electric motor, a converter and an inverter, and this harmonic distortion has a harmful effect on the system. In this paper, the definition of the harmonic distortion and problems caused by the harmonic distortion in the electric propulsion of the vessels are introduced and the practical solutions for the problems are investigated.
-
Recently, the synthetic material stern tube bush has been applied by ship owner's requirement because the synthetic material has a merit. That is to say, when stern tube seal is damaged and sea water comes into stern tube, it can work without problem because of water lubricating property. However, the material also has a demerit of temperature rise problem when some factors meets on synthetic material, for example, not sufficient lubrication oil supply and not proper shaft alignment and so on. As known in the world, the RAILKO bush is rampant for synthetic material by some ship owner because of the above mentioned reason. However, the bush has several accidents on large container vessel. Unfortunately or fortunately our yard has a chance to apply the RAILKO bush owing to requirement of specific ship owner. Therefore, it is much more required to approach the accurate shaft alignment analysis. In line with this reason, we had a shaft alignment calculation considering hull deformation and hull flexibility (hull stiffness). Also, in the calculation, we had considered dynamic condition which is reflected he propeller thrust forces and moments and oil film stiffness on the shaft alignment calculation. According to he shaft alignment calculation, bearing slope was applied on the tern tube bush and was measured. The RAILKO bush should be applied the running in procedure according to maker's recommendation for performing the oil film on the bush surface. Finally, the vessels were delivered successfully without any problem with AILKO bush as shown on his paper.
-
With the development of computer program in calculation for torsional vibration of ship's propulsion shafting it has become possible to calculate all order's vibratory amplitude, vibratory torque, vibratory stress and synthesis value at all concerned revolutions by way of solving the vibratory equation directly. Though this kind of propulsion shafting vibration calculation method makes it possible to get generalized and precise result of calculation, the unexpected critical crankshaft torsional vibration has still appeared in maneuvering range of the engine. A close investigation has been carried out to find out the cause for the 2-node propulsion shafting torsional vibration of the crankshaft that exceeded the limitation value near the MCR 104rpm on the sea trial of the recently delivered 6000TEU class container vessel from HHIC. In conclusion, as the latest super-output engine with heavy crankshaft and propeller mass seems to be liable to 2-node torsional vibration of crankshaft, it is recommend that, in the design stage of propulsion shafting, its torsional vibration condition must be more carefully checked.
-
The hovercraft is the amphibious hovercraft. Design and manufacturing companies of the aero propeller exist rarely in the world. Hence the propeller has beef designed and manufactured by manufacturing companies which make aero propeller mainly. In this paper, the hovercraft propeller of similar, which is building and designing by HHIC, is considered the type of aero propeller, rotational speed, diameter, number of blades, Open air propeller efficiency. As the result of check, hovercraft which is necessary huge static thrust is needed the ducted propeller in order to improve climbing capacity. However, the number of blades and turning direction almost do not affect.
-
This paper describes the design and implementation of a low cost inertial navigation system(INS) using an inertial measurement unit(IMU), a digital compass, GPS, and an embedded system. The system has been developed for a transporter that load and unload ship blocks in a shipbuilding yard. When the transporter would move from place to place, they would periodically pass under obstructions that would obscure the GPS signal. This increases the error when estimating the position. Thus the INS has been used to improve position accuracy. INS is also capable of providing continuous estimates of the transporter's position and orientation. Even though IMU is typically very expensive, this INS is made of "low cost" components and the indirect Kalman filtering algorithm.
-
New and more efficient propulsion systems are required for LNG carriers. One of the proposed systems is a combination of a gas turbine with a heat recovery steam generator. This system constitutes a novel approach, which needs to be analyzed by system analysis and risk assessment to compensate for the lack of field experience. Of specific concern is the high pressure fuel supply system. This paper describes the dispersion and fire analysis performed to identify for safety and design improvement of proposed system.
-
Twin screw mode LNG Carrier is appeared. Because LNG CARRIER is larger recently. In this paper introduces maneuvering characteristics of Twin screw LNG CARRIER on single screw mode, which are found when the non-using screw mode is fixed or not(wind mill).
-
The letters and marks on the hull of vessels are marked by welding bead or steel plate to resist the corrosion environment. It has done by manual work. So, it cause deterioration of welding quality and process delay and so on. The automated welding device for draft mark has developed partially in the field of shipbuilding. But it can be used for draft mark only. And it has caused a few problems about that workablity and movablity are decreased owing to the size and weight of device. So we developed the automated welding device that can be used for most letters and marks on the hull. It designed to 3 axises mobile robot include to ratoation axis and stand alone type controller with multi GUI base on imbedded windows.
-
Estimation and Application of Turbulent Flow-Induced Input Power for Vibrational Power Flow AnalysisTurbulent flow-induced vibrations generate the structural fatigue and noise problems. In this paper, using Corcos, Smol' yakov-Tkachenko, Ffowcs Williams and Chase models, the input power generated by distributed fluid force is predicted for power flow analysis (PFA) of turbulent flow-induced vibration. Additionally, the Fast Fourier Transform (FFT) is used to raise the calculation efficiency PFA results obtained are compared with the classical modal solutions for verifications. Analytic results using the fluid models show good agreements with those of modal analysis, respectively.
-
A hull form is 181K DWT Bulk Carrier, of which new design and hull form have been developed using CFD tools and model tests. The basic concept design of hull form has been carried out with considering the factors, which are a lot of influence of the wave and viscosity resistance. The considered factors of particular are LCB, DLWL shape, tern and stem profile, Cp-curve shape, etc. Numerical calculations are carried out in the initial design stage and experimental model tests are also carried out in towing tank of MOERI. The variation of the significantly effective characteristics is carried out to achieve optimized hull form. The results from numerical calculations and model test as well as the design procedures to obtain an optimized hull form resent in this paper.
-
Development of the E/R Insulation Modeling Automation System Using Structural Hull Model InformationThe Insulation, which is consist of the glass wool, mineral wool or perforated SUS plate, installed on the wall or under ceiling for the protecting heat and the blocking the noise of engine room area. In our shipyard, designing the structure model of insulation is hard and difficult, Because designed the insulation model is considered of any factors which are hull model properties of panel shape, direction and thickness and service of area. In this paper, We issue the way to utilize shape and direction of the hull model information and specific character of working space in engine room.
-
The deck plates of ship block is made of thin plates in their construction. A main reason of using thin plates is that deck plates don't need to support large structural loads. Therefore, out-of-plane deformations between stiffeners are frequent in deck blocks. Because these are got right by correction heating, they continuously causes quality problems in the final dock-building process. According to preceding research, the lifting process by cranes would offset the effect of correction heating. This study finds out the remained efficiency of correction heating when tensional loads are added by a lifting to corrected parts. We used inherent strains in calculating the efficiency, and established the methodology where the positions for callings are. For getting more accurate positions, besides the structural lifting analysis, welding deformation analysis with upper block and measured data from a serial ship are also referenced.
-
Cutting procedures whose qualifies are determined by various variables largely influences shipbuilding productivity. Particularly, defects in cutting shapes and cutting surface results in delay of the post shipbuilding stages such as welding and assemblage process. Because cutting procedures are influenced by various numbers of requirements according to the plate thickness, cutting precision can be maintained when the cutting conditions are appropriate. Existing cutting procedures utilize fossil fuels such as propane or ethylene as the main fuel component. Especially, when fossil fuel is applied to thick plate cutting, this process gives relatively slow cutting speed and generates large quantities of harmful polluting fumes. Recently, hydrogen-oxygen mixed gas generated by electrically dissociating water into Hydrogen and oxygen components is welcomed as an alternative fuel source. Also recent results report that alternative cutting fuel improves the cutting Dualities and speed. This paper presents that cutting characteristics and optimum cutting condition of hydrogen-oxygen mixed gas.
-
For complying with the increasing number of ships construction, it's required that not only for minimizing the period of construction in Skid Berth also maximizing application proportion of Skid Barge, The full-ship load out construction method required indispensably.
-
This paper presents the application of a robot which aims at grinding automatically welding-bead remained in the removal job of working pieces for shipbuilding. In specific, the investigation on this application is composed of two parts; one topic is on the development of a robot platform vertically movable on a steel plate of hull, while the other topic is of the development of a grinding tool mechanism in order to remove welding-beads by using a diamond wheel installed on a servo cylinder (which can result in high working pressure on the grinding wheel). Besides, the development of a vision system for tracking welding-beads as well as recognizing welding surfaces is added for the convenience of this robot application to the removal of welding-beads remained in the working pieces for shipbuilding.