For an ideal $\mathcal{I}$ of a preadditive category $\mathcal{A}$, we study when the canonical functor $\mathcal{C}:\mathcal{A}{\rightarrow}\mathcal{A}/\mathcal{I}$ is local. We prove that there exists a largest full subcategory $\mathcal{C}$ of $\mathcal{A}$, for which the canonical functor $\mathcal{C}:\mathcal{C}{\rightarrow}\mathcal{C}/\mathcal{I}$ is local. Under this condition, the functor $\mathcal{C}$, turns out to be a weak equivalence between $\mathcal{C}$, and $\mathcal{C}/\mathcal{I}$. If $\mathcal{A}$ is additive (with splitting idempotents), then $\mathcal{C}$ is additive (with splitting idempotents). The category $\mathcal{C}$ is ample in several cases, such as the case when $\mathcal{A}$=Mod-R and $\mathcal{I}$ is the ideal ${\Delta}$ of all morphisms with essential kernel. In this case, the category $\mathcal{C}$ contains, for instance, the full subcategory $\mathcal{F}$ of Mod-R whose objects are all the continuous modules. The advantage in passing from the category $\mathcal{F}$ to the category $\mathcal{F}/\mathcal{I}$ lies in the fact that, although the two categories $\mathcal{F}$ and $\mathcal{F}/\mathcal{I}$ are weakly equivalent, every endomorphism has a kernel and a cokernel in $\mathcal{F}/{\Delta}$, which is not true in $\mathcal{F}$. In the final section, we extend our theory from the case of one ideal$\mathcal{I}$ to the case of $n$ ideals $\mathcal{I}_$, ${\ldots}$, $\mathca{l}_n$.