Mammalian reproduction is regulated by a feedback circuit of the key reproductive hormones such as GnRH, gonadotropin and sex steroids on the hypothalamic-pituitary-gonadal axis. In particular, the onset of female puberty is triggered by gain of a pulsatile pattern and increment of GnRH secretion from hypothalamus. Previous studies including our own clearly demonstrated that genistein (GS), a phytoestrogenic isoflavone, altered the timing of puberty onset in female rats. However, the brain-specific actions of GS in female rats has not been explored yet. The present study was performed to examine the changes in the activities of GnRH neurons and their neural circuits by GS in female rats. Concerning the drug delivery route, intracerebroventricular (ICV) injection technique was employed to eliminate the unwanted actions on the extrabrain tissues which can be occurred if the testing drug is systemically administered. Adult female rats (PND 100, 210-230 g BW) were anaesthetized, treated with single dose of GS ($3.4{\mu}g$/animal), and sacrificed at 3 hrs post-injection. To determine the transcriptional changes of reproductive hormone-related genes in hypothalamus, total RNAs were extracted and applied to the semi-quantitative reverse transcription polymerase chain reaction (RT-PCR). ICV infusion of GS significantly raised the transcriptional activities of enhanced at puberty1 (EAP-1, p<0.05), glutamic acid decarboxylase (GAD67, p<0.01) which are known to modulate GnRH secretion in the hypothalamus. However, GS infusion could not change the mRNA level of nitric oxide synthase 2 (NOS-2). GS administration significantly increased the mRNA levels of KiSS-1 (p<0.001), GPR54 (p<0.001), and GnRH (p<0.01) in the hypothalami, but decreased the mRNA levels of LH-$\beta$ (p<0.01) and FSH-$\beta$ (p<0.05) in the pituitaries. Taken together, the present study indicated that the acute exposure to GS could directly activate the hypothalamic GnRH modulating system, suggesting the GS's disrupting effects such as the early onset of puberty in immature female rats might be derived from premature activation of key reproduction related genes in hypothalamus-pituitary neuroendocrine circuit.