과제정보
본고는 2023년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임[NO. 2021-0-00766, 신경망 응용 자동생성 및 실행환경 최적화 배포를 지원하는 통합개발 프레임워크 기술개발].
참고문헌
- Market and Market, "MLOps Market by Component (Platform and Services), Deployment Mode (Cloud and On-premises), Organization Size (Large Enterprises and SMEs), Vertical (BFSI, Healthcare and Life Sciences, Retail and eCommerce, Telecom) and Region - Global Forecast to 2027," 2022, https://chosareport-korea.com/mnmtc8518/
- Google, "Google Vertex AI," https://cloud.google.com/vertex-ai?hl=ko
- Microsoft, "MS Azure Machine Learning," https://azure.microsoft.com
- Amazon, "Amazon SageMaker," https://aws.amazon.com/pm/sagemaker
- Kubeflow Homepage, https://www.kubeflow.org/
- ETRI, "TANGO Project," GitHub, https://github.com/MLTANGO/TANGO
- 김선태, 조창식, "디바이스 적응형 신경망 생성 및 배포 구현," 전자공학회논문지, 제61권 제1호, 2024, pp. 27-33.
- C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, "YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object Detectors," arXive preprint, Jul. 2022, https://doi.org/10.48550/arXiv.2207.02696
- I. Shin, C. Cho, and S.-T. Kim, "Method for Expanding Search Space With Hybrid Operations in DynamicNAS," IEEE Access, vol. 12, 2024, pp. 10242-10253.
- J. Auh, C. Cho, and S.-T. Kim, "Improved contrastive learning model via identification of false-negatives in self-supervised learning," ETRI J., online published, 2024, https://doi.org/10.4218/etrij.2023-0285