• Title/Summary/Keyword: Generation of Neural Network

Search Result 414, Processing Time 0.028 seconds

Image Caption Generation using Recurrent Neural Network (Recurrent Neural Network를 이용한 이미지 캡션 생성)

  • Lee, Changki
    • Journal of KIISE
    • /
    • v.43 no.8
    • /
    • pp.878-882
    • /
    • 2016
  • Automatic generation of captions for an image is a very difficult task, due to the necessity of computer vision and natural language processing technologies. However, this task has many important applications, such as early childhood education, image retrieval, and navigation for blind. In this paper, we describe a Recurrent Neural Network (RNN) model for generating image captions, which takes image features extracted from a Convolutional Neural Network (CNN). We demonstrate that our models produce state of the art results in image caption generation experiments on the Flickr 8K, Flickr 30K, and MS COCO datasets.

Test Generation for Combinational Logic Circuits Using Neural Networks (신경회로망을 이용한 조합 논리회로의 테스트 생성)

  • 김영우;임인칠
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.9
    • /
    • pp.71-79
    • /
    • 1993
  • This paper proposes a new test pattern generation methodology for combinational logic circuits using neural networks based on a modular structure. The CUT (Circuit Under Test) is described in our gate level hardware description language. By conferring neural database, the CUT is compiled to an ATPG (Automatic Test Pattern Generation) neural network. Each logic gate in CUT is represented as a discrete Hopfield network. Such a neual network is called a gate module in this paper. All the gate modules for a CUT form an ATPG neural network by connecting each module through message passing paths by which the states of modules are transferred to their adjacent modules. A fault is injected by setting the activation values of some neurons at given values and by invalidating connections between some gate modules. A test pattern for an injected fault is obtained when all gate modules in the ATPG neural network are stabilized through evolution and mutual interactions. The proposed methodology is efficient for test generation, known to be NP-complete, through its massive paralelism. Some results on combinational logic circuits confirm the feasibility of the proposed methodology.

  • PDF

Proposed Neural Network Approach for Monitoring Plant Status in Korean Next Generation Reactors

  • Varde, P.V.;Hur, Seop;Lee, D.Y.;Moon, B.S.;Han, J.B.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.112-120
    • /
    • 2003
  • This paper reports the development work carried out in respect of a proposed application of Neural Network approach for the Korean Next generation Reactor (KNGR) now referred as APR-1400. The emphasis is on establishing the methodology and the approach to be adopted towards realizing this application in the next generation reactors. Keeping in view the advantages and limitation of Artificial Neural Network Approach, the role of ANN has been limited to plant status or to be more precise plant transient monitoring. The simulation work carried out so far and the results obtained shows that artificial neural network approach caters to the requirements of plant status monitoring and qualifies to be incorporated as a part of proposed operator support systems of the referenced nuclear power plant.

2D Game Image Color Synthesis System Using Convolutional Neural Network (컨볼루션 인공신경망을 이용한 2차원 게임 이미지 색상 합성 시스템)

  • Hong, Seung Jin;Kang, Shin Jin;Cho, Sung Hyun
    • Journal of Korea Game Society
    • /
    • v.18 no.2
    • /
    • pp.89-98
    • /
    • 2018
  • The recent Neural Network technique has shown good performance in content generation such as image generation in addition to the conventional classification problem and clustering problem solving. In this study, we propose an image generation method using artificial neural network as a next generation content creation technique. The proposed artificial neural network model receives two images and combines them into a new image by taking color from one image and shape from the other image. This model is made up of Convolutional Neural Network, which has two encoders for extracting color and shape from images, and a decoder for taking all the values of each encoder and generating a combination image. The result of this work can be applied to various 2D image generation and modification works in game development process at low cost.

Deep Adversarial Residual Convolutional Neural Network for Image Generation and Classification

  • Haque, Md Foysal;Kang, Dae-Seong
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.10 no.1
    • /
    • pp.111-120
    • /
    • 2020
  • Generative adversarial networks (GANs) achieved impressive performance on image generation and visual classification applications. However, adversarial networks meet difficulties in combining the generative model and unstable training process. To overcome the problem, we combined the deep residual network with upsampling convolutional layers to construct the generative network. Moreover, the study shows that image generation and classification performance become more prominent when the residual layers include on the generator. The proposed network empirically shows that the ability to generate images with higher visual accuracy provided certain amounts of additional complexity using proper regularization techniques. Experimental evaluation shows that the proposed method is superior to image generation and classification tasks.

MPPT Control of Photovoltaic by FNN (FNN에 의한 태양광 발전의 MPPT 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1968-1975
    • /
    • 2009
  • The paper proposes a novel control algorithm for tracking maximum power of PV generation system.. The maximum power of PV array is determinated by a insolation and temperature. Prior considered the term in PV generation system is how maximum power point(MPP) is accurately tracked.. The paper proposes a fuzzy neural network(FNN) control algorithm so as to accurately track those maximum power points. The proposed control algorithm comprises the antecedence part of fuzzy rule and clustering method, multi-layer neural network in the consequent part. FNN has the advantages which are depicted both high performance and robustness in fuzzy control and high adaptive control in neural network.. Specially, it can show the outstanding control performance for parameter variations appling to non-linear character of PV array. In this paper, the tracking speed and the accuracy prove the validity through comparing a proposed algorithm with a conventional one.

Modeling and optimal control input tracking using neural network and genetic algorithm in plasma etching process (유전알고리즘과 신경회로망을 이용한 플라즈마 식각공정의 모델링과 최적제어입력탐색)

  • 고택범;차상엽;유정식;우광방;문대식;곽규환;김정곤;장호승
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.1
    • /
    • pp.113-122
    • /
    • 1996
  • As integrity of semiconductor device is increased, accurate and efficient modeling and recipe generation of semiconductor fabrication procsses are necessary. Among the major semiconductor manufacturing processes, dry etc- hing process using gas plasma and accelerated ion is widely used. The process involves a variety of the chemical and physical effects of gas and accelerated ions. Despite the increased popularity, the complex internal characteristics made efficient modeling difficult. Because of difficulty to determine the control input for the desired output, the recipe generation depends largely on experiences of the experts with several trial and error presently. In this paper, the optimal control of the etching is carried out in the following two phases. First, the optimal neural network models for etching process are developed with genetic algorithm utilizing the input and output data obtained by experiments. In the second phase, search for optimal control inputs in performed by means of using the optimal neural network developed together with genetic algorithm. The results of study indicate that the predictive capabilities of the neural network models are superior to that of the statistical models which have been widely utilized in the semiconductor factory lines. Search for optimal control inputs using genetic algorithm is proved to be efficient by experiments. (author). refs., figs., tabs.

  • PDF

MLOps Technology Trend Supporting Automatic Generation of Neural Network (신경망 자동생성 지원 MLOps 기술 동향)

  • S.T. Kim;C.S. Cho
    • Electronics and Telecommunications Trends
    • /
    • v.39 no.5
    • /
    • pp.12-20
    • /
    • 2024
  • As more devices are used across various industries and their performance improves, artificial intelligence applications are being increasingly adopted. Hence, the rapid development of neural networks suitable for diverse devices can determine the competitiveness of companies. Machine learning operations (MLOps), which constitute a framework that supports neural network generation and its immediate application to devices, have become necessary for the development of artificial intelligence. Currently, most MLOps are provided by major companies such as Google, Amazon, and Microsoft, which provide cloud services supported by large-scale computing power. In addition, various services are provided by the open-source project Kubeflow. We examine basic concepts and technology trends in MLOps and unveil additional functions required in industry.

Automatic Generation of Machining Parameters of Electric Discharge Wire-Cut Using 2-Step Neuro-Estimation (와이어 가공 조건 자동 생성 2 단계 신경망 추정)

  • 이건범;주상윤;왕지남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.7-13
    • /
    • 1998
  • This paper presents a methodology for determining machining conditions in Electric Discharge Wire-Cut. Unification of two phase neural network approach with an automatic generation of machining parameters is designed. The first phase neural network, which is 1 to M backward-mapping neural net, produces approximate machining conditions. Using approximate conditions, all possible conditions are newly created by the proposed automatic generation procedure. The second phase neural net, which is a M to 1 forward-mapping neural net, determines the best one among the generated candidates. Simulation results with ANN are given to verify that the presenting methodology could apply for determining machining parameters in Electric Discharge Wire-Cut.

  • PDF

Multimodal Context Embedding for Scene Graph Generation

  • Jung, Gayoung;Kim, Incheol
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1250-1260
    • /
    • 2020
  • This study proposes a novel deep neural network model that can accurately detect objects and their relationships in an image and represent them as a scene graph. The proposed model utilizes several multimodal features, including linguistic features and visual context features, to accurately detect objects and relationships. In addition, in the proposed model, context features are embedded using graph neural networks to depict the dependencies between two related objects in the context feature vector. This study demonstrates the effectiveness of the proposed model through comparative experiments using the Visual Genome benchmark dataset.