DOI QR코드

DOI QR Code

Low-complexity patch projection method for efficient and lightweight point-cloud compression

  • Sungryeul Rhyu (Department of Electronics Engineering, Kyung Hee University) ;
  • Junsik Kim (Software Test and Certification Laboratory, Telecommunications Technology Association) ;
  • Gwang Hoon Park (Department of Computer Science and Engineering, Kyung Hee University) ;
  • Kyuheon Kim (Department of Electronics Engineering, Kyung Hee University)
  • 투고 : 2023.06.23
  • 심사 : 2023.11.29
  • 발행 : 2024.08.20

초록

The point cloud provides viewers with intuitive geometric understanding but requires a huge amount of data. Moving Picture Experts Group (MPEG) has developed video-based point-cloud compression in the range of 300-700. As the compression rate increases, the complexity increases to the extent that it takes 101.36 s to compress one frame in an experimental environment using a personal computer. To realize real-time point-cloud compression processing, the direct patch projection (DPP) method proposed herein simplifies the complex patch segmentation process by classifying and projecting points according to their geometric positions. The DPP method decreases the complexity of the patch segmentation from 25.75 s to 0.10 s per frame, and the entire process becomes 8.76 times faster than the conventional one. Consequently, this proposed DPP method yields similar peak signal-to-noise ratio (PSNR) outcomes to those of the conventional method at reduced times (4.7-5.5 times) at the cost of bitrate overhead. The objective and subjective results show that the proposed DPP method can be considered when low-complexity requirements are required in lightweight device environments.

키워드

과제정보

This study was supported by the Information Technology Research Center of the Ministry of Science and ICT, Korea (grant number: IITP-2024-2021-0-02046) and the Institute of Information & Communications Technology Planning & Evaluation, Korea (grant number: RS-2024-00227431, Development of 3D space digital media standard technology).

참고문헌

  1. B. Wang, M. Zhu, Y. Lu, J. Wang, W. Gao, and H. Wei, Real-time 3D object detection from point cloud through foreground segmentation, IEEE Access 9 (2021), 84886-84898, DOI 10.1109/ACCESS.2021.3087179.
  2. R. Koizumi, D. Kobayashi, and N. Hashimoto, Acceleration of dynamic spatial augmented reality system with a depth camera, (Proc. 2015 international conference on Cyberworlds, Visby, Sweden), 2015, pp. 50-53.
  3. B. Pal, S. Khaiyum, and Y. S. Kumaraswamy, 3D point cloud generation from 2D depth camera images using successive triangulation, (2017 international conference on innovative mechanisms for industry applications [ICIMIA], Bengaluru, India), 2017, pp. 129-133.
  4. Call for proposals for point cloud compression v2, ISO/IEC JTC1/SC29/WG11 MPEG2017/N16763, Hobart, AU, 2017.
  5. S. Rhyu, J. Kim, J. Im, and K. Kim, Contextual homogeneity-based patch decomposition method for higher point cloud compression, IEEE Access 8 (2020), 207805-207812, DOI 10.1109/ACCESS.2020.3038800.
  6. V-PCC codec description, ISO/IEC JTC1/SC29/WG11 MPEG2022/N00100, Online, 2022.
  7. K. Cao and P. Cosman, Denoising and inpainting for point clouds compressed by V-PCC, IEEE Access 9 (2021), 107688-107700, DOI 10.1109/ACCESS.2021.3102029.
  8. V-PCC test model v19, ISO/IEC JTC1/SC29/WG11 MPEG2022/N00361, Online, 2022.
  9. R. Mekuria, K. Blom, and P. Cesar, Design, implementation, and evaluation of a point cloud codec for tele-immersive video, IEEE Trans. Circuits Syst. Video Technol. 27 (2017), no. 4, 828-842, DOI 10.1109/TCSVT.2016.2543039.
  10. S. Schwarz, M. Preda, V. Baroncini, M. Budagavi, P. Cesar, P. A. Chou, R. A. Cohen, M. Krivokuca, S. Lasserre, Z. Li, J. Llach, K. Mammou, R. Mekuria, O. Nakagami, E. Siahaan, A. Tabatabai, A. M. Tourapis, and V. Zakharchenko, Emerging MPEG standards for point cloud compression, IEEE J. Emerg. Sel. Top. Circuits Syst. 9 (2019), no. 1, 133-148, DOI 10.1109/JETCAS.2018.2885981.
  11. J. Kammerl, N. Blodow, R. B. Rusu, S. Gedikli, M. Beetz, and E. Steinbach, Real-time compression of point cloud streams, (Proc. Int. Conf. Robotics and Automation, Saint Paul, MN, USA), 2012, pp. 778-785.
  12. J. Kim, J. Im, S. Rhyu, and K. Kim, 3D motion estimation and compensation method for video-based point cloud compression, IEEE Access 8 (2020), 83538-83547, DOI 10.1109/ACCESS.2020.2991478.
  13. Q. Liu, H. Yuan, R. Hamzaoui, H. Su, J. Hou, and H. Yang, Reduced reference perceptual quality model with application to rate control for video-based point cloud compression, IEEE Trans. Image Process. 30 (2021), 6623-6636, DOI 10.1109/TIP.2021.3096060.
  14. H. Liu, H. Yuan, Q. Liu, J. Hou, and J. Liu, A comprehensive study and comparison of core technologies for MPEG 3-D point cloud compression, IEEE Trans. Broadcast. 66 (2020), no. 3, 701-717, DOI 10.1109/TBC.2019.2957652.
  15. Q. Liu, H. Yuan, J. Hou, R. Hamzaoui, and H. Su, Model-based joint bit allocation between geometry and color for video-based 3D point cloud compression, IEEE Trans. Multimedia 23 (2021), 3278-3291, DOI 10.1109/TMM.2020.3023294.
  16. Patch flexible orientation, ISO/IEC JTC1/SC29/WG11 MPEG2018/m43680, Ljubljana, 2018.
  17. Sparse linear model based padding method for the texture images, ISO/IEC JTC1/SC29/WG11 MPEG2018/m44837, Macao, 2018
  18. CE2.12 report on texture padding, ISO/IEC JTC1/SC29/WG11 MPEG2019/m47601, Geneva, 2019
  19. New contribution on geometry padding, ISO/IEC JTC1/SC29/WG11 MPEG2019/m47496, Geneva, 2019.
  20. S. Li, O. C. Au, L. Sun, W. Dai, and R. Zou, Color bleeding reduction in image and video compression, (Proceedings of 2011 International Conference on Computer Science and Network Technology, Harbin, China), 2011, pp. 665-669.
  21. A. Punchihewa and J. Armstrong, Effects of sub-sampling and quantisation on colour bleeding due to image and video compression, (23rd international conference image and vision computing New Zealand), 2008, pp. 1-6.
  22. ISO/IEC 14496-10. (2003), Information technology -- coding of audio-visual objects -- part 10: advanced video coding.
  23. ISO/IEC 23008-2. Information technology - high efficiency coding and media delivery in heterogeneous environments - part 2: high efficiency video coding.
  24. ISO/IEC 23090-3. (2021), Information technology - coded representation of immersive media - part 3: versatile video coding.
  25. ISO/IEC JTC1/SC29/WG3/N0163, Draft text of ISO/IEC FDIS 23090-10 carriage of visual volumetric video-based coding data, MPEG 133, 2021.
  26. S. Schwarz and D. Flynn, Common test conditions for PCC, ISO/IEC JTC1/SC29/WG11 MPEG2020/N19324, Alpbach, Austria, 2020.
  27. J. L. Bentley, Multidimensional binary search trees used for associative searching, Commun. ACM 18 (1975), no. 9, 509-517, DOI 10.1145/361002.361007.S2CID13091446.
  28. S. A. Nene and S. K. Nayar, A simple algorithm for nearest neighbor search in high dimensions, IEEE Trans. Pattern Anal. Mach. Intell. 19 (1997), no. 9, 989-1003.
  29. H. Samet, K-nearest neighbor finding using MaxNearestDist, IEEE Trans. Pattern Anal. Mach. Intell. 30 (2008), no. 2, 243-252.
  30. H. Hoppe, T. DeRose, T. Duchamp, J. A. McDonald, and W. Stuetzle, Surface reconstruction from unorganized points, ACM SIGGRAPH Comput. Graphics 26 (1992), no. 2, 71-78.
  31. P. F. Felzenszwalb and D. P. Huttenlocher, Efficient graph-based image segmentation, Int. J. Comput. Vis. 59 (2004), 167-181.
  32. TMC2 surface separation for video encoding efficiency, ISO/IEC JTC1/SC29/WG11 MPEG2018/m43668, Ljubljana, 2018.
  33. 5G glass-type augmented reality/mixed reality device, 3GPP TR 26.998, v18.0, 2023.
  34. Samsung unveils 6G spectrum white paper and 6G research findings, Available from: https://news.samsung.com/global/samsung-unveils-6g-spectrum-white-paper-and-6g-research-findings [last accessed December 2023].
  35. 3GPP release 16 - shifting gears to increase 5G speeds on multiple network highways, Available from: https://images.samsung.com/is/content/samsung/assets/global/business/networks/insights/white-papers/3gpp-release-16-shifting-gears-to-increase-5g-speeds-on-multiple-network-highways/Samsung-3GPP-Release-16-Whitepaper.pdf [last accessed December 2023].
  36. Samsung V-NAND SSD 970 EVO, Available from: https://semiconductor.samsung.com/consumer-storage/internal-ssd/970evo/ [last accessed December 2023].