DOI QR코드

DOI QR Code

An efficient dual layer data aggregation scheme in clustered wireless sensor networks

  • Fenting Yang (School of Electrical and Electronic Engineering, Wuhan Polytechnic University) ;
  • Zhen Xu (School of Electrical and Electronic Engineering, Wuhan Polytechnic University) ;
  • Lei Yang (School of Electrical and Electronic Engineering, Wuhan Polytechnic University)
  • Received : 2023.05.31
  • Accepted : 2024.01.23
  • Published : 2024.08.20

Abstract

In wireless sensor network (WSN) monitoring systems, redundant data from sluggish environmental changes and overlapping sensing ranges can increase the volume of data sent by nodes, degrade the efficiency of information collection, and lead to the death of sensor nodes. To reduce the energy consumption of sensor nodes and prolong the life of WSNs, this study proposes a dual layer intracluster data fusion scheme based on ring buffer. To reduce redundant data and temporary anomalous data while guaranteeing the temporal coherence of data, the source nodes employ a binarized similarity function and sliding quartile detection based on the ring buffer. Based on the improved support degree function of weighted Pearson distance, the cluster head node performs a weighted fusion on the data received from the source nodes. Experimental results reveal that the scheme proposed in this study has clear advantages in three aspects: the number of remaining nodes, residual energy, and the number of packets transmitted. The data fusion of the proposed scheme is confined to the data fusion of the same attribute environment parameters.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China under Grant No. 62072319 and Science and Technology Plan Project of Hubei Provincial Department of Transportation under Grant No. 2014-721-1-1.

References

  1. R. Wan, N. Xiong, Q. Hu, H. Wang, and J. Shang, Similarity-aware data aggregation using fuzzy c-means approach for wireless sensor networks, J. Wirel. Commun. Netw. 2019 (2019), no. 1, 59. 
  2. C.-Y. Yang, C.-Y. Lin, S. Galsanbadam, and H. Samani, Multivariable support vector regression with multi-sensor network data fusion, (2018 IEEE International Conference on Systems, Man, and Cybernetics [SMC], Miyazaki, Japan), 2018, pp. 4029-4034. 
  3. S. Dananjayan, J. Zhuang, Y. Tang, Y. He, C. Hou, and S. Luo, Wireless sensor deployment scheme for cost-effective smart farming using the ABC-TEEM algorithm, Evol. Syst. 16 (2023), 567-579. 
  4. J. Zhang, Z. Lin, P.-W. Tsai, and L. Xu, Entropy-driven data aggregation method for energy-efficient wireless sensor networks, Inf. Fusion 56 (2020), 103-113. 
  5. D. Izadi, J. Abawajy, S. Ghanavati, and T. Herawan, A data fusion method in wireless sensor networks, Sens. 15 (2015), no. 2, 2964-2979. 
  6. I. Ullah and H. Y. Youn, A novel data aggregation scheme based on self-organized map for WSN, J. Supercomput. 75 (2019), no. 7, 3975-3996. 
  7. M. Soltani, M. Hempel, H. Sharif, Data fusion utilization for optimizing large-scale wireless sensor networks, (2014 IEEE International Conference on Communications [ICC], Sydney, Australia), 2014, pp. 367-372. 
  8. L. Song and J. He, Research on data fusion scheme for wireless sensor networks with combined improved LEACH and compressed sensing, Sens. 19 (2019), no. 21, 4704. 
  9. X. Xiao, H. Huang, and W. Wang, Underwater wireless sensor networks: an energy-efficient clustering routing protocol based on data fusion and genetic algorithms, Appl. Sci. 11 (2020), no. 1, 312. 
  10. L. Cao, Y. Cai, and Y. Yue, Data fusion algorithm for heterogeneous wireless sensor networks based on extreme learning machine optimized by particle swarm optimization, J. Sens. 2020 (2020), 1-17. 
  11. A. Jarwan, A. Sabbah, and M. Ibnkahla, Data transmission reduction schemes in WSNs for efficient IoT systems, IEEE J. Select. Areas Commun. 37 (2019), no. 6, 1307-1324. 
  12. C. Long, X. Liu, Y. Yang, Y. Zhang, S. Tan, K. Fang, X. Tang, and G. Yang, A data fusion method in wireless sensor network based on belief structure, J. Wirel. Com. Netw. 2021 (2021), no. 1, 86. 
  13. V. Seedha Devi, T. Ravi, and S. B. Priya, Cluster based data aggregation scheme for latency and packet loss reduction in WSN, Comput. Commun. 149 (2020), 36-43. 
  14. A. Reyana and P. Vijayalakshmi, Multi-sensor data fusion technique for energy conservation in the wireless sensor network application condition-based environment monitoring, J. Ambient Intell. Humaniz. Comput. 13 (2021), 1-10. 
  15. P. K. Kodoth and G. Edachana, An energy efficient data gathering scheme for wireless sensor networks using hybrid crow search algorithm, IET Communn. 15 (2021), no. 7, 906-916. 
  16. S. Sefati, M. Abdi, and A. Ghaffari, Cluster-based data transmission scheme in wireless sensor networks using black hole and ant colony algorithms, Int. J. Commun. Syst. 34 (2021), no. 9, e4768. 
  17. M. Alasfasfeh, Z. A. Arida, O. A. Saraereh, Q. Alasfasfeh, and S. Alemaishat, An optimized data fusion paradigm for WSN based on neural networks, Comput. Mater. Contin. 69 (2021), no. 1, 1097-1108. 
  18. V. Narayan and A. K. Daniel, A novel approach for cluster head selection using trust function in WSN, Scalable Comput.:Practive Experience 22 (2021), no. 1, 1-13. 
  19. G. Sun, Z. Zhang, B. Zheng, and Y. Li, Multi-sensor data fusion algorithm based on trust degree and improved genetics, Sens. 19 (2019), no. 9, 2139. 
  20. I. Ullah and H. Y. Youn, Efficient data aggregation with node clustering and extreme learning machine for WSN, J. Supercomput. 76 (2020), no. 12, 10009-10035. 
  21. I. Ullah, H. Y. Youn, and Y.-H. Han, An efficient data aggregation and outlier detection scheme based on radial basis function neural network for WSN, J. Ambient Intell. Humaniz. Comput. 6 (2021), DOI 10.1007/s12652-020-02703-7. 
  22. F. Yuan, Y. Zhan, and Y. Wang, Data density correlation degree clustering method for data aggregation in WSN, IEEE Sens. J. 14 (2014), no. 4, 1089-1098. 
  23. A. Agarwal, K. Jain, and A. Dev, BFL: a buffer based linear filtration method for data aggregation in wireless sensor networks, Int. J. Inf. Tecnol. 14 (2022), no. 3, 1445-1454. 
  24. S. Xia, X. Nan, X. Cai, and X. Lu, Data fusion based wireless temperature monitoring system applied to intelligent greenhouse, Comput. Electron. Agric. 192 (2022), 106576. 
  25. L. Dash, B. K. Pattanayak, S. K. Mishra, K. S. Sahoo, N. Z. Jhanjhi, M. Baz, and M. Masud, A data aggregation approach exploiting spatial and temporal correlation among sensor data in wireless sensor networks, Electron. 11 (2022), no. 7, 989. 
  26. K. Jain and A. Singh, A two vector data-prediction model for energy-efficient data aggregation in wireless sensor network, Concurr. Comput. 34 (2022), no. 11, e6898. 
  27. A. K. Idrees, R. Alhussaini, and M. A. Salman, Energy-efficient two-layer data transmission reduction protocol in periodic sensor networks of IoTs, Pers. Ubiquitous Comput. 11 (2020), 1-20. 
  28. S. Feldman and D. Dechev, A wait-free multi-producer multi-consumer ring buffer, SIGAPP Appl. Comput. Rev. 15 (2015), no. 3, 59-71. 
  29. C. Yin, S. Zhang, J. Wang, and N. N. Xiong, Anomaly detection based on convolutional recurrent autoencoder for IoT time series, IEEE Trans Syst Man Cybern Syst 52 (2022), no. 1, 112-122. 
  30. P. Shi, G. Li, Y. Yuan, and L. Kuang, Data fusion using improved support degree function in aquaculture wireless sensor networks, Sens. 18 (2018), no. 11, 3851. 
  31. R. R. Yager, The power average operator, IEEE Trans. Syst. Man Cybern. A 31 (2001), no. 6, 724-731. 
  32. L. S. Feng, X. N. Ming, and F. Jeffery, On new models of grey incidence analysis based on visual angle of similarity and nearness, Syst. Eng.-Theory Pract. 30 (2010), 881-887. 
  33. L. Kuang, P. Shi, Y. Ji, and Z. Ping, WSN water quality monitoring data fusion method based on improved support degree function, Trans. Of the Chin. Soc. Agri. Eng. 36 (2020), 192-200. 
  34. R. Lin, B. Wu, and Y. Su, An adaptive weighted Pearson similarity measurement method for load curve clustering, Energies 11 (2018), no. 9, 2466. 
  35. W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, An application-specific protocol architecture for wireless microsensor networks, IEEE Trans. Wirel. Commun. 1 (2002), no. 4, 660-670. 
  36. S. Madden, Intel Berkeley Research Lab, 2004, Available from: http://db.csail.mit.edu/labdata/labdata.html [2004]. 
  37. Y. Li, J. Hua, and B. Liu, Study on the outlier identification approaches for atmospheric pollutant monitoring data, Acta Sci. Circumst. (2022), 1-12. 
  38. Y. Xiong, M. Shen, M. Lu, Y. Liu, Y. Sun, and L. Liu, Algorithm of real time data fusion for greenhouse WSN system, Trans. Chin. Soc. Agri. Eng. 28 (2012), 160-166. 
  39. Q. Duan, X. Xiao, Y. Liu, L. Zhang, and K. Wang, Data fusion method of livestock and poultry breeding internet of things based on improved support function, Trans. Chin. Soc. Agri. Eng. 33 (2017), 239-245. 
  40. M. J. Handy, M. Haase, and D. Timmermann, Low energy adaptive clustering hierarchy with deterministic cluster-head selection, (4th International Workshop on Mobile and Wireless Communications Network, Stockholm, Sweden), 2002, pp. 368-372.