DOI QR코드

DOI QR Code

Improved wearable, breathable, triple-band electromagnetic bandgap-loaded fractal antenna for wireless body area network applications

  • Mallavarapu Sandhya (Department of Electronics & Communications Engineering, National Institute of Technology Warangal) ;
  • Lokam Anjaneyulu (Department of Electronics & Communications Engineering, National Institute of Technology Warangal)
  • Received : 2023.03.31
  • Accepted : 2023.06.14
  • Published : 2024.08.20

Abstract

A compact triple-band porous electromagnetic bandgap structure-loaded coplanar-waveguide-fed wearable antenna is introduced for applications of wireless body area networks. The porous structure is aimed to create a stopband or bandgap in the electromagnetic spectrum and increase breathability. The holes in the bottom electromagnetic bandgap surface increase the inductance, which in turn increases the bandwidth. The final design resonates at three bands with impedance bandwidths of 264 MHz, 100 MHz, and 153 MHz and maximum gains of 2.18 dBi, 6.75 dBi, and 9.50 dBi at 2.45 GHz, 3.5 GHz, and 5.5 GHz, respectively. In addition, measurements indicate that the proposed design can be deformed up to certain curvature and withstand human tissue loading. Moreover, the specific absorption rate remains within safe levels for humans. Therefore, the proposed antenna can suitably operate in the industrial, scientific, and medical, Bluetooth, Wi-Fi, and WiMAX bands for potential application to wireless body area networks.

Keywords

References

  1. Q. Liu, C. Yi, J. Chen, M. Xia, Y. Lu, Y. Wang, X. Liu, M. Li, K. Liu, and D. Wang, Flexible, breathable, and highly environmental-stable Ni/PPy/PET conductive fabrics for efficient electromagnetic interference shielding and wearable textile antennas, Compos. Part B Eng. 215 (2021). https://doi.org/10.1016/j.compositesb.2021.108752 
  2. B. Mohamadzade, R. M. Hashmi, R. B. Simorangkir, R. Gharaei, S. Ur Rehman, and Q. H. Abbasi, Recent advances in fabrication methods for flexible antennas in wearable devices: state of the art, Sensors 19 (2019). https://doi.org/10.3390/s19102312 
  3. Y. Mukai, and M. Suh, Development of a conformal woven fabric antenna for wearable breast hyperthermia, Fash. Text. 8 (2021), 1-12. https://doi.org/10.1186/s40691-020-00231-8 
  4. I. Ullah, M. Wagih, and S. P. Beeby, Design of textile antenna for moisture sensing. Eng. Proc. 15 (2022). https://doi.org/10.3390/engproc2022015011 
  5. M. Suh, Wearable sensors for athletes, in electronic textiles: smart fabrics and wearable technology, Elsevier, 2015, pp. 257-273. https://doi.org/10.1016/B978-0-08-100201-8.00013-8 
  6. G. Monti, L. Corchia, E. Paiano, G. de Pascali, L. Tarricone, C. Tomassoni, and R. Sorrentino, Textile wearable antenna for firefighters positioning, (URSI Asia-Pacific Radio Science Conference, New Delhi, India), June 2019, pp. 1-4. https://doi.org/10.23919/URSIAP-RASC.2019.8738181 
  7. A. Habani, M. Nedil, T. A. Denidni, and L. Talbi, High gain enhancement off-body antenna for underground mining communications, (IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, USA), Oct. 2017, pp. 2167-2168. https://doi.org/10.1109/APUSNCURSINRSM.2017.8073126 
  8. H. Lee, J. Tak, and J. Choi, Wearable antenna integrated into military berets for indoor/outdoor positioning system, IEEE Antennas Wireless Propag. Lett. 16 (2017), 1919-1922. https://doi.org/10.1109/LAWP.2017.2688400 
  9. A. Sabban, Wearable circular polarized antennas for health care, 5G, energy harvesting, and IoT systems, Electronics 11 (2022). https://doi.org/10.3390/electronics11030427 
  10. P. Adhikary, S. Ray, S. Chatterjee, S. Ghosh, S. Chattopadhyay, S. Banerjee, A. K. Dhar, and A. Das, Design and development of wearable patch antenna for GPS applications, (IEEE International Electromagnetics and Antenna Conference, Vancouver, Canada), Dec. 2019, pp. 068-071. https://doi.org/10.1109/IEMANTENNA.2019.8928696 
  11. M. Roudjane, M. Khalil, A. Miled, and Y. Messaddeq, New generation wearable antenna based on multimaterial fiber for wireless communication and real-time breath detection, Photonics 5 (2018). https://doi.org/10.3390/photonics5040033 
  12. S. Mallavarapu, and A. Lokam, A critical survey on fractal wearable antennas with enhanced gain and bandwidth for WBAN, (Inventive Communication and Computational Technologies: Proceedings of ICICCT 2020, Tamil Nadu, India), 2021, pp. 737-745. https://doi.org/10.1007/978-981-15-7345-3_63 
  13. R. Sanchez-Montero, P. L. Lopez-Espi, C. Alen-Cordero, and J. A. Martinez-Rojas, Bend and moisture effects on the performance of a U-shaped slotted wearable antenna for off-body communications in an industrial scientific medical (ISM) 2.4 GHz band, Sensors 19 (2019). https://doi.org/10.3390/s19081804 
  14. C. Hertleer, A. van Laere, H. Rogier, and L. van Langenhove, Influence of relative humidity on textile antenna performance, Text. Res. J. 80 (2010), 177-183. https://doi.org/10.1177/0040517509105696 
  15. S. Mallavarapu, and A. Lokam, Circuit modeling and analysis of wearable antennas on the effect of bending for various feeds, Eng. Technol. Appl. Sci. Res. 12 (2022), 8180-8187. https://doi.org/10.48084/etasr.4699 
  16. H. Shahariar, H. Soewardiman, C. A. Muchler, J. J. Adams, and J. S. Jur, Porous textile antenna designs for improved wearability, Smart Mater. Struct. 27 (2018), 045008. https://doi.org/10.1088/1361-665X/aaaf91 
  17. S. Kim, and M. M. Tentzeris, Parylene coated waterproof washable inkjet-printed dual-band antenna on paper substrate, Int. J. Microw. Wirel. Technol. 10 (2018), 814-818. https://doi.org/10.1017/S1759078718000685 
  18. A. R. Alhawari, T. Saeidi, A. H. M. Almawgani, A. T. Hindi, H. Alghamdi, T. Alsuwian, S. A. Awwad, and M. A. Imran, Wearable metamaterial dual-polarized high isolation UWB MIMO vivaldi antenna for 5G and satellite communications, Micromachines 12 (2021). https://doi.org/10.3390/mi12121559 
  19. R. N. Tiwari, V. Kaim, P. Singh, T. Khan, and B. K. Kanaujia, Semi-flexible diversified circularly polarized millimeter-wave MIMO antenna for wearable biotechnologies, IEEE Trans. Antennas Propag. 71 (2023), 3968-3982. https://doi.org/10.1109/TAP.2023.3255507 
  20. U. Musa, S. M. Shah, H. A. Majid, I. A. Mahadi, M. K. Rahim, M. S. Yahya, and Z. Z. Abidin, Design and analysis of a compact dual-band wearable antenna for WBAN applications, IEEE Access 11 (2023), 30996-31009. https://doi.org/10.1109/ACCESS.2023.3262298 
  21. A. Alsaraira, O. A. Saraereh, A. Ali, and S. Alabed, Design of LoRa antenna for wearable medical applications, IEEE Access 11 (2023), 23886-23895. https://doi.org/10.1109/ACCESS.2023.3254916 
  22. A. W. Memon, I. L. de Paula, B. Malengier, S. Vasile, P. van Torre, and L. van Langenhove, Breathable textile rectangular ring microstrip patch antenna at 2.45 GHz for wearable applications, Sensors 21 (2021). https://doi.org/10.3390/s21051635 
  23. J. H. Low, P. S. Chee, and E. H. Lim, Liquid EBG-backed stretchable slot antenna for human body, IEEE Trans. Antennas Propag. 70 (2022), 9120-9129. https://doi.org/10.1109/TAP.2022.3184456 
  24. L. T. Hwang, C. C. Wang, H. C. Lin, M. Y. Huang, and C. W. Kuo, High gain and low back radiation and thin antenna designs using electromagnetic bandgap surface for radar and wearable applications, (IEEE 72nd Electronic Components and Technology Conference, San Diego, CA, USA), July 2022, pp. 103-108. https://doi.org/10.1109/ECTC51906.2022.00026
  25. P. Dalal, U. Rafique, S. M. Abbas, N. C. Pradhan, and S. S. Karthikeyan, Dual-band wearable antenna for wireless body area networks on a flexible substrate, (IEEE Wireless Antenna and Microwave Symposium, Rourkela, India), November 2022, pp. 1-5. https://doi.org/10.1109/WAMS54719.2022.9944978 
  26. S. Peng, and H. Zheng, Design of coplanar-waveguide-feed antenna, Int. J. Eng. Res. Technol. 4 (2015), 1171-1177. https://doi.org/10.17577/IJERTV4IS070514 
  27. M. Alam, N. Misran, B. Yatim, and M. T. Islam, Development of electromagnetic band gap structures in the perspective of microstrip antenna design, Int. J. Antennas Propag. 2013 (2013), 507158. https://doi.org/10.1155/2013/507158 
  28. A. C. Durgun, C. A. Balanis, C. R. Birtcher, H. Huang, and H. Yu, High-impedance surfaces with periodically perforated ground planes, IEEE Trans. Antennas Propag. 62 (2014), 4510-4517. https://doi.org/10.1109/TAP.2014.2331703 
  29. D. Sievenpiper, L. Zhang, R. F. Broas, N. G. Alexopolous, and E. Yablonovitch, High-impedance electromagnetic surfaces with a forbidden frequency band, IEEE Trans. Microw. Theory Tech. 47 (1999), 2059-2074. https://doi.org/10.1109/22.798001 
  30. T. T. Le, Y. D. Kim, and T. Y. Yun, A triple-band dual-open-ring high-gain high-efficiency antenna for wearable applications, IEEE Access 9 (2021), 118435-118442. https://doi.org/10.1109/ACCESS.2021.3107605 
  31. A. Yadav, V. K. Singh, P. Yadav, A. K. Beliya, A. K. Bhoi, and P. Barsocchi, Design of circularly polarized triple-band wearable textile antenna with safe low SAR for human health, Electronics 9 (2020), 1366. https://doi.org/10.3390/electronics9091366 
  32. A. Y. Ashyap, S. H. Dahlan, Z. Z. Abidin, M. H. Dahri, H. A. Majid, M. R. Kamarudin, S. K. Yee, M. H. Jamaluddin, A. Alomainy, and Q. H. Abbasi, Robust and efficient integrated antenna with EBG-DGS enabled wide bandwidth for wearable medical device applications, IEEE Access 8 (2020), 56346-56358. https://doi.org/10.1109/ACCESS.2020.2981867 
  33. V. R. Keshwani, P. P. Bhavarthe, and S. S. Rathod, Eight shape electromagnetic band gap structure for bandwidth improvement of wearable antenna, Prog. Electromagn. Res. C 116 (2021), 37-49. https://doi.org/10.2528/PIERC21070603 
  34. C. Wang, L. Zhang, S. Wu, S. Huang, C. Liu, and X. Wu, A dual-band monopole antenna with EBG for wearable wireless body area networks, Appl. Comput. Electromagn. Soc. J. 36 (2021), 48-54. https://doi.org/10.47037/2020.ACES.J.36010748 
  35. W. El; M. Imen; S. Jean, M. Ribero, and L. Osman, Design of low-profile and safe low SAR tri-band textile EBG-based antenna for IoT applications, Prog. Electromagn. Res. Lett. 98 (2021), 85-94. https://doi.org/10.2528/PIERL21051107 
  36. T. Saeidi, M. Gokdemir, and S. Karamzadeh, Metamaterial-based circularly polarized wearable antenna for ISM and 5G communications, (30th Signal Processing and Communications Applications Conference, Safranbolu, Turkey), Aug. 2022, pp. 1-4. https://doi.org/10.1109/SIU55565.2022.9864810 
  37. T. Saeidi, and S. Karamzadeh, A miniaturized multi-frequency wide-band leaky wave button antenna for ISM/5G communications and WBAN applications, Radio Sci. 58 (2023), pp. 1-18. https://doi.org/10.1029/2022RS007611 
  38. P. B. Samal, S. J. Chen, and C. Fumeaux, Wearable textile multiband antenna for WBAN applications, IEEE Trans. Antennas Propag. 71 (2023), 1391-1402. https://doi.org/10.1109/TAP.2022.3230550