DOI QR코드

DOI QR Code

수계전해질기반 차세대 금속이온전지 기술

Technologies for Next-Generation Metal-Ion Batteries Based on Aqueous Electrolytes

  • 신동옥 (스마트소재연구실) ;
  • 최재철 (스마트소재연구실) ;
  • 강석훈 (스마트소재연구실) ;
  • 박영삼 (스마트소재연구실) ;
  • 이영기 (스마트소재연구실)
  • D.O. Shin ;
  • J. Choi ;
  • S.H. Kang ;
  • Y.S. Park ;
  • Y.-G. Lee
  • 발행 : 2024.02.01

초록

There have been continuous requirements for developing more reliable energy storage systems that could address unsolved problems in conventional lithium-ion batteries (LIBs) and thus be a proper option for large-scale applications like energy storage system (ESS). As a promising solution, aqueous metal-ion batteries (AMIBs) where water is used as a primary electrolyte solvent, have been emerging owing to excellent safety, cost-effectiveness, and eco-friendly feature. Particularly, AMIBs adopting mutivalence metal ions (Ca2+, Mg2+, Zn2+, and Al3+) as mobile charge carriers has been paid much attention because of their abundance on globe and high volumetric capacity. In this research trend review, one of the most popular AMIBs, zinc-ion batteries (ZIBs), will be discussed. Since it is well-known that ZIBs suffer from various (electro) chemical/physical side reactions, we introduce the challenges and recent advances in the study of ZIBs mainly focusing on widening the electrochemical window of aqueous electrolytes as well as improving electrochemical properties of cathode, and anode materials.

키워드

과제정보

이 논문은 한국전자통신연구원 내부연구과제 미래원천 창의전문연구실[23YB2600, 비리튬자원기반 차세대 수계형 다가 금속이온전지 원천기술 개발] 사업의 지원을 받아 수행한 결과임.

참고문헌

  1. X. Jia et al., "Active materials for aqueous zinc ion batteries: Synthesis, crystal structure, morphology, and electrochemistry," Chem. Rev., vol. 120, 2020, pp. 7795-7866.  https://doi.org/10.1021/acs.chemrev.9b00628
  2. V. Verma et al., "Progress in rechargeable aqueous zinc- and aluminum-ion battery electrodes: Challenges and outlook," Adv. Sustain. Syst., vol. 3, 2019, article no. 1800111. 
  3. N. Zhang et al., "Materials chemistry for rechargeable zinc-ion batteries," Chem. Soc. Rev., vol. 49, 2020, pp. 4203-4219.  https://doi.org/10.1039/C9CS00349E
  4. Z. Liu et al., "Voltage issue of aqueous rechargeable metal-ion batteries," Chem. Soc. Rev., vol. 49, 2020, 용어해설 pp. 180-232.  https://doi.org/10.1039/C9CS00131J
  5. V. Verma et al., "Undesired reactions in aqueous rechargeable zinc ion batteries," ACS Energy Lett., vol. 6, 2021, pp. 1773-1785.  https://doi.org/10.1021/acsenergylett.1c00393
  6. N. Zhang et al., "Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery," J. Am. Chem. Soc., vol. 138, 2016, pp. 12894-12901.  https://doi.org/10.1021/jacs.6b05958
  7. L. Suo et al., ""Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries," Science, vol. 350, 2015, pp. 938-943.  https://doi.org/10.1126/science.aab1595
  8. F. Wang et al., "Highly reversible zinc metal anode for aqueous batteries," Nat. Mater., vol. 17, 2018, pp. 543-549.  https://doi.org/10.1038/s41563-018-0063-z
  9. S. Karan et al., "Characterization of ion transport property in hot-press cast solid polymer electrolyte(SPE) films: [PEO: Zn(CF3SO3)2]," Ionics, vol. 23, 2017, pp. 2721-2726.  https://doi.org/10.1007/s11581-017-2036-7
  10. Q. Han et al., "Durable, flexible self-standing hydrogel electrolytes enabling high-safety rechargeable solid-state zinc metal batteries," J. Mater. Chem. A, vol. 6, 2018, pp. 23046-23054.  https://doi.org/10.1039/C8TA08314B
  11. H. Li et al., "An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte," Energy Environ. Sci., vol. 11, 2018, pp. 941-951.  https://doi.org/10.1039/C7EE03232C
  12. K. Wu et al., "Biodegradable gel electrolyte suppressing water-induced issues for long-life zinc metal anodes," ACS Appl. Mater. Interfaces, vol. 14, 2022, pp. 34612-34619.  https://doi.org/10.1021/acsami.2c05887
  13. F. Wan et al., "Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers," Nat. Commun., vol. 9, 2018, article no. 1656. 
  14. L. Cao et al., "Solvation structure design for aqueous Zn metal batteries," J. Am. Chem. Soc., vol. 142, 2020, pp. 21404-21409.  https://doi.org/10.1021/jacs.0c09794
  15. H. Pan et al., "Reversible aqueous zinc/manganese oxide energy storage from conversion reactions," Nat. Energy, vol. 1, 2016, article no. 16039. 
  16. S. Khamsanga et al., "δ-MnO2 nanofower/graphite cathode for rechargeable aqueous zinc ion batteries," Sci. Rep., vol. 9, 2019, article no. 8441. 
  17. J. Zhou et al., "Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode," Chem. Commun., vol. 54, 2018, pp. 4457-4460.  https://doi.org/10.1039/C8CC02250J
  18. X. Dai et al., "Freestanding graphene/VO2 composite films for highly stable aqueous Zn-ion batteries with superior rate performance," Energy Storage Mater., vol. 17, 2019, pp. 143-150. https://doi.org/10.1016/j.ensm.2018.07.022
  19. W. Guo et al., "Dendrite-free Zn anode with dual channel 3D porous frameworks for rechargeable Zn batteries," Energy Storage Mater., vol. 30, 2020, pp. 104-112. https://doi.org/10.1016/j.ensm.2020.04.038
  20. Z. Cai et al., "Chemically resistant Cu-Zn/Zn composite anode for long cycling aqueous batteries," Energy Storage Mater., vol. 27, 2020, pp. 205-211. https://doi.org/10.1016/j.ensm.2020.01.032
  21. K. Zhao et al., "Ultrathin surface coating enables stabilized zinc metal anode," Adv. Mater. Interfaces, vol. 5, 2018, article no. 1800848.
  22. L. Kang et al., "Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries" Adv. Energy Mater., vol. 8, 2018, article no. 1801090.