DOI QR코드

DOI QR Code

Enhancing foundation bearing capacity in waterlogged ground for sustainable building construction

  • Mukhtiar Ali Soomro (School of Mechanics and Civil Engineering, China University of Mining and Technology) ;
  • Shaokai Xiong (School of Mechanics and Civil Engineering, China University of Mining and Technology) ;
  • Naeem Mangi (School of Mechanics and Civil Engineering, China University of Mining and Technology) ;
  • Dildar Ali Mangnejo (Department of Civil Engineering, Mehran University of Engineering and Technology, Shaheed Zulfiqar Ali Bhutto Campus) ;
  • Sharafat Ali Darban (School of Mechanics and Civil Engineering, China University of Mining and Technology)
  • Received : 2024.01.17
  • Accepted : 2024.11.19
  • Published : 2024.11.25

Abstract

Construction on waterlogged ground presents significant challenges for geotechnical engineers due to the low bearing capacity, high water table, and risks of post-construction settlement, all of which can compromise the stability of buildings. This study aims to investigate the settlement behavior of foundations on such terrains and recommend suitable foundation types to safely support building loads. To achieve these objectives, three-dimensional coupled consolidation analyses were performed to evaluate the bearing capacities of shallow footings with dimensions of 1.22 × 1.22 m2 and 1.83 × 1.83 m2. The results showed ultimate load capacities of approximately 10 kN and 21 kN, respectively, for these footings on waterlogged ground. To enhance these capacities, the use of pit sand as a filling material was explored, yielding substantial improvements. The bearing capacity of the 1.22 × 1.22 m2 footing increased by a factor of 9, while the 1.83 × 1.83 m2 footing saw a sixfold improvement. In addition, alternative foundation solutions were evaluated to achieve higher load-bearing capacities. These included raft foundations, single piles, pile groups, and piled raft foundations. Among these, a single pile demonstrated an ultimate load capacity of 300 kN, while a (2 × 2) pile group supported up to 400 kN. The piled raft foundation exhibited the highest capacity, with an ultimate load of 620 kN. These findings provide valuable insights into effective foundation designs for waterlogged conditions, enabling safer and more reliable construction practices.

Keywords

Acknowledgement

The authors would like to acknowledge the financial support provided China University of Mining and Technology, Xuzhou, China.

References

  1. Abed, A.A. (2008), "Numerical modeling of expansive soil behavior", Ph.D thesis, Institute for geotechnical, Stuttgart University, Germany.
  2. Afsharpour, S., Payan, M., Chenari, R.J., Ahmadi, H. and Fathipour, H. (2022), "Bearing capacity of strip footings on unsaturated soils under combined loading using LEM", Geomech. Eng., 31(2), 223-235. https://doi.org/10.12989/gae.2022.31.2.223.
  3. Al-Aghbari, M.Y. and Mohamedzein, Y.E.A. (2004), "Bearing capacity of strip foundations with structural skirts", J. Geotech. Geol. Eng., 22(1), 43-57. https://doi.org/10.1023/B:GEGE.0000013997.79473.e0.
  4. Amin, M. (2017), "Bearing capacity of strip footings on a stone masonry trench in clay", Geomech. Eng., 13(2), 255-267. https://doi.org/10.12989/gae.2017.13.2.255.
  5. Bolton, M.D. (1986), "The strength and dilatancy of sands", Geotechnique, 36(1), 65-78.
  6. Bouassida, M., Fattah, M.Y. and Mezni, N. (2022), "Bearing capacity of foundation on soil reinforced by deep mixing columns", Geomech. Geoeng., 17(1), 309-320. https://doi.org/10.1080/17486025.2020.1755458.
  7. Chauhan, M.S., Mittal, S. and Mohanty, B. (2008), "Performance evaluation of silty sand sub-grade reinforced with fly ash and fiber", India.
  8. Das, S., Halder, K. and Chakraborty, D. (2022), "Seismic bearing capacity of shallow embedded strip footing on rock slopes", Geomech. Eng., 30(2), 123-138. https://doi.org/10.12989/gae.2022.30.2.123.
  9. Dash, S.K., Krishnaswamy, N. and Rajagopal, K, (2001), "Bearing capacity of strip footing supported on geocell-reinforced sand", Geotext. Geomembranes, 19(4), 235-256. https://doi.org/10.1016/S0266-1144(01)00006-1.
  10. Dash, S.K., Sireesh, S. and Sitharam, T.G. (2003), "Behavior of geocell reinforced sand beds under circular footing", Ground Improvement, 7, 111-115. https://doi.org/10.1680/grim.2003.7.3.111.
  11. Djellali, A., Ounis, A. and Saghafi, B. (2012), "Behavior of flexible pavements on expansive soils", J. Transport. Eng., 1(1), 1-14.
  12. El Sawwaf, M.E.I. and Nazer, A. (2005), "Behavior of circular footings on confined granular soil", J. Geotech. Geoenviron. Eng.- ASCE, 131(3), 359-366. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:3(359).
  13. Elam, J. and Bjordal, C. (2020), "A review and case studies of factors affecting the stability of wooden foundation piles in urban environments exposed to construction work", Int. Biodeterioration & Biodegradation, 148, 104913. https://doi.org/10.1016/j.ibiod.2020.104913.
  14. Hamza, G. (2012), A numerical study on geotextile stabilized highway embankment under vibration loading.
  15. Hashem, M.D., Abu-Baker, A.M. and Hashem, M.D. (2013), "Numerical modeling of flexible pavement constructed on expansive soils", Eur. Int. J. Sci. Tech., 2(10), 19-34.
  16. Hyunwook, K. and William, G. (2009), "Finite element cohesive fracture modeling of airport pavements at low temperatures", Cold Reg. Sci. Technol., 57(2-3), 123-130. https://doi.org/10.1016/j.coldregions.2009.02.004
  17. Lam, S.Y. (2010), "Ground movements due to excavation in clay: physical and analytical models", PhD thesis, University of Cambridge.
  18. Lee, C.J. and Ng, C.W.W. (2004), "Development of downdrag on piles and pile groups in consolidating soil", J. Geotech. Geoenviron. Eng., 130(9), 905-914. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:9(905).
  19. Mahiyar, H, and Patel, A.N. (1997), "The effect of lateral confinement on the bearing capacity of fine sand", Indian Geotech. J. New Delhi, 22(4), 226-234.
  20. Mayne, P. and Kulhawy, F. (1982), "K0-OCR relationships in soils", J. Geotech. Eng. - ASCE, 108(6), 851-872.
  21. Meyerhof, G.G. (1963), "Some recent research on the bearing capacity of foundations", Can. Geotech. J., 1(1), 16-26. https://doi.org/10.1139/t63-003.
  22. Ortiz, J.M.R. (2001), "Strengthening of foundations through peripheral confinement", Proceedings of the 15th the International Conference on Soil Mechanics and Geotechnical Engineering, Netherlands.
  23. Ottosen, N.S. and Petersson, H. (1992), "Introduction to the finite element method", New York: Prentice Hall.
  24. Rajagopal, K., Krishnaswamy, N. and Latha, G. (1999), "Behavior of sand confined with single and multiple geocells", Geotext. Geomembranes., 17(3), 171-184. https://doi.org/10.1016/S0266-1144(98)00034-X.
  25. Rashid, A.S.A., Shirazi, M.G., Nazir, R., Mohamad, H., Sahdi, F., and Horpibulsuk, S. (2020), "Bearing capacity performance of soft cohesive soil treated by kenaf limited life geotextile", Mar. Georesour. Geotec., 38(6), 755-760. https://doi.org/10.1080/1064119X.2019.1616861.
  26. Salencon, J. (2003), "Bearing capacity of strip footings with horizontal confinement", Comptes Rendus. Mecanique, 331(5), 319-324.
  27. Santos de Alencar, A.T., Galindo Aires, R.A. and Melentijevic, S. (2019), "Bearing capacity of foundation on rock mass depending on footing shape and interface roughness", Geomech. Eng., 18(4), 391-406. https://doi.org/10.12989/gae.2019.18.4.391.
  28. Shirazi, M.G., Rashid, A.S.B.A., Nazir, R.B., Rashid, A.H.B.A., Moayedi, H., Horpibulsuk, S. and Samingthong, W. (2020), "Sustainable soil bearing capacity improvement using natural limited life geotextile reinforcement-A review", Minerals, 10(5), 479. https://doi.org/10.3390/min10050479.
  29. Singh V.K., Prasad, A. and Agrawal, R.K. (2007), "Effect of soil confinement on ultimate bearing capacity of square footing under eccentric inclined load", Electron. J. Geotech. Eng., 12, 1-14.
  30. Soomro, M.A., Hong, Y., Ng, C.W.W., Lu, H. and Peng, S. (2015), "Load transfer mechanism in pile group due to single tunnel advancement in stiff clay", Tunn. Undergr. Sp. Tech., 45, 63-72. https://doi.org/10.1016/j.tust.2014.08.001.
  31. Soomro, M.A., Kumar, M., Xiong, H., Mangnejo, D.A. and Mangi, N. (2020), "Investigation of effects of different construction sequences on settlement and load transfer mechanism of single pile due to twin stacked tunnelling", Tunn. Undergr. Sp. Tech., 96, 103171. https://doi.org/10.1016/j.tust.2019.103171.
  32. Soomro, M.A., Liu, K., Cui, Z.D., Mangi, N. and Mangnejo, D.A. (2024b), "Insights from 3D numerical simulations on the impact of tunnelling on vertical and battered pile groups under lateral loading", Comput. Geotech., 169, 106195. https://doi.org/10.1016/j.compgeo.2024.106195.
  33. Soomro, M.A., Mangi, N., Cui, Z.D., Liu, K. and Mangnejo, D.A. (2024a), "Evaluation of response mechanisms in an elevated pile group subjected to lateral loading caused by twin-tunnelling", Comput. Geotech., 171, 106334. https://doi.org/10.1016/j.compgeo.2024.106334.
  34. Soomro, M.A., Mangi, N., Mangnejo, D.A. and Zhang, Z. (2023a), "The responses of battered pile to tunnelling at different depths relative to the pile length", Geomech. Eng., 35(6), 603-615. https://doi.org/10.12989/gae.2023.35.6.603.
  35. Soomro, M.A., Mangnejo, D.A. and Mangi, N. (2023b), "Investigation of crack growth in a brick masonry wall due to twin perpendicular excavations", Geomech. Eng., 34(3), 251-265. https://doi.org/10.12989/gae.2023.34.3.251.
  36. Soomro, M.A., Ng, C.W.W., Liu, K. and Memon, N.A. (2017), "Pile responses to side-by-side twin tunnelling in stiff clay: Effects of different tunnel depths relative to pile", Comput. Geotech., 84, 101-116. https://doi.org/10.1016/j.compgeo.2016.11.011.
  37. Villalobos, F., Byrne, B.W., Houlsby, G.T. and Martin, C.M. (2003), "Bearing capacity tests of scale suction caisson footings on sand, experimental data", Data report FOT005/1, Civil Engineering Research Group, Department of Engineering Science, The University of Oxford.
  38. Yang, X.L. and Zhang, R. (2017), "Collapse analysis of shallow tunnel subjected to seepage in layered soils considering joined effects of settlement and dilation", Geomech. Eng., 13(2), 217-235. https://doi.org/10.12989/gae.2017.13.2.217.