DOI QR코드

DOI QR Code

Influence of gravity and viscosity on a fiber-reinforced thermoelastic solid with voids via the three-phase-lag model

  • Mohamed I.A. Othman (Department of Mathematics, Faculty of Science, Zagazig University) ;
  • Samia M. Said (Department of Mathematics, Faculty of Science, Zagazig University) ;
  • Rania A. Fathy (Department of Mathematics, Faculty of Science, Zagazig University) ;
  • Esraa M. Gamal (Department of Mathematics, Faculty of Science, Zagazig University)
  • 투고 : 2022.07.01
  • 심사 : 2024.11.15
  • 발행 : 2024.11.25

초록

The goal of this work is to examine how a fiber-reinforced thermoelastic half-space with voids is affected by the gravity field and viscosity. The displacement, stress, and temperature distributions' analytical formulas are obtained from the normal mode analysis. The problem is analytically addressed using a three-phase-lag model. Use MATLAB programming to determine the physical fields with appropriate boundary conditions and carry out numerical computations. Examine the outcomes in the absence and presence of gravity, viscosity as well as reinforcement. Graphs are used to visualize and analyze computational findings. Theoretical as well as numerical results reveal that all the field variables are sensitive towards the gravity field, the viscosity, and the reinforcement.

키워드

참고문헌

  1. Abd-Alla, A.M. and Ahmed, S.M. (2003), "Stonley and Rayleigh waves in a non-homogeneous orthotropic elastic medium under the influence of gravity", Appl. Math. Comput., 13(1), 187-200. https://doi.org/10.1016/S0096-3003(01)00329-0. 
  2. Abd-Alla, A.M., Abo-Dahab, S.M. and Bayones, F.S. (2015), "Wave propagation in fibre-reinforced anisotropic thermo-elastic medium subjected to gravity field", Struct. Eng. Mech., 53(2), 277-296. https://doi.org/10.12989/sem.2015.53.2.277. 
  3. Abouelregal, A.E. and Alesemi, M. (2022), "Evaluation of the thermal and mechanical waves in anisotropic fiber-reinforced magnetic viscoelastic solid with temperature-dependent properties using the MGT thermoelastic model", Case Stud. Therm. Eng., 36(5), 102187. https://doi.org/10.1016/j.csite.2022.102187. 
  4. Ailawalia, P. and Narah, N.S. (2009), "Effect of rotation in generalized thermoelastic solid under the influence of gravity with an overlying infinite thermoelastic fluid", Appl. Math. Mech., 30(12), 1505-1518. https://doi.org/10.1007/s10483-009-1203-6. 
  5. Alharbi, A.M., Said, S.M. and Othman, M.I.A. (2021a), "The effect of multi-phase-lag and coriolis acceleration on a fiber-reinforced isotropic thermoelastic medium", Steel. Compos. Struct., 39(2), 125-134. https://doi.org/10.12989/scs.2021.39.2.125. 
  6. Alharbi, A.M., Said, S.M. and Othman, M.I.A. (2021b), "Effect of gravity on a magneto-thermoelastic porous medium with the frame of a memory-dependent derivative in the context of the 3PHL model", Steel Comp. Struct., 40(6), 881-891. https://doi.org/10.12989/scs.2021.40.6.881. 
  7. Belfield, A.J., Rogers, T.G. and Spencer, A.J.M. (1983), "Stress in elastic plates reinforced by fiber lying in concentric circles", J. Mech. Phys. Solid., 31(1), 25-54. https://doi.org/10.1016/0022-5096(83)90018-2 
  8. Biswas, S. (2021), "Rayleigh waves in porous orthotropic medium with phase lags", Struct. Eng. Mech., 80(3), 265-274. https://doi.org/10.12989/sem.2021.80.3.265. 
  9. Bromwich, T.J.J.A. (1898), "On the influence of gravity on elastic waves and in particular on the vibrations of an elastic globe", Proc. Lon. Math. Soc., 30(1), 98-165. https://doi.org/10.1112/plms/s1-30.1.98. 
  10. Ciarletta, M. and Scalia, A. (1991), "On some theorems in the linear theory of visco-elastic materials with voids", J. Elast., 25(2), 149-158. https://doi.org/10.1007/BF00042463. 
  11. Cowin, S.C. and Nunziato, J.W. (1973), "Linear elastic materials with voids", J. Elast., 13(7), 125-147. https://doi.org/10.1007/BF00041230. 
  12. Craig, M.S. and Hart, V.G. (1979), "The stress boundary-value problem for finite plane deformations of a fibre-reinforced material", Quar. J. Mech. Appl. Math., 32 (4), 473-498. https://doi.org/10.1093/qjmam/32.4.473. 
  13. Dhaliwal, R.S. and Wang, J. (1994), "Domain of influence theorem in the theory of elastic materials with voids", Int. J. Eng. Sci., 32(11), 1823-1828. https://doi.org/10.1016/0020-7225(94)90111-2. 
  14. Fahmy, M.A. (2021), "A new boundary element algorithm for a general solution of nonlinear space-time fractional dual-phase-lag bio-heat transfer problems during electromagnetic radiation", Case Stud. Therm. Eng., 25, 100918. https://doi.org/10.1016/j.csite.2021.100918. 
  15. Fahmy, M. A. and Almehmadi, M. M. (2022a), "Boundary element analysis of rotating functionally graded anisotropic fiber-reinforced magneto-thermoelastic composites", Open Eng., 12, 313-322. https://doi.org/10.1515/eng-2022-0036. 
  16. Fahmy, M.A. (2022b), "3D boundary element model for ultra-sonic wave propagation fractional order boundary value problems of functionally graded anisotropic fiber-reinforced plates", Fractal Fract., 6(5), 247. https://doi.org/10.3390/fractalfract6050247. 
  17. Fahmy, M.A. (2022c), "Three-dimensional boundary element strategy for stress sensitivity of fractional-order thermoelasto-plastic ultrasonic wave propagation problems of anisotropic fiber-reinforced polymer composite material", Polymers, 14(14), 2883. https://doi.org/10.3390/polym14142883. 
  18. Fahmy, M.A., Alsulami, M.O. and Abouelregal, A.E. (2023a), "Three-temperature boundary element modeling of ultrasound wave propagation in anisotropic viscoelastic porous media", Axioms, 12(5), 473. https://doi.org/10.3390/axioms12050473. 
  19. Fahmy, M.A. (2023b), "A nonlinear fractional BEM model for magneto-thermo-visco-elastic ultrasound waves in temperature-dependent FGA rotating granular plates", Fractal Fract., 7(3), 214. https://doi.org/10.3390/fractalfract7030214. 
  20. Fahmy, M.A. and Almehmadi, M.M. (2023c), "Fractional dual-phase-lag model for nonlinear viscoelastic soft tissues", Fractal Fract., 7(1), 66. https://doi.org/10.3390/fractalfract7010066. 
  21. Fahmy, M.A. (2024), "A time-stepping DRBEM for nonlinear fractional sub-diffusion bio-heat ultrasonic wave propagation problems during electromagnetic radiation", J. Umm Al-Qura Univ. Appll. Sci., https://doi.org/10.1007/s43994-024-00178-2. 
  22. Iesan, D. (2011), "On a theory of thermoelastic materials with voids", J. Elasticity, 104 (1), 369-384. https://doi.org/10.1007/s10659-010-9300-7. 
  23. Jain, K., Kalkal, K.K. and Deswal, S. (2018), "Effect of heat source and gravity on a fractional order fiber reinforced thermoelastic medium", Struct. Eng. Mech., 68(2), 215-226. https://doi.org/10.12989/sem.2018.68.2.215. 
  24. Kalkal, K.K., Deswal, S. and Poonia, R. (2024), "Two-dimensional deformations in a rotating functionally graded fiber-reinforced thermoelastic half-space with magnetic field", Mech. Based. Des. Struc., 52(3), 1543-1560. https://doi.org/10.1080/15397734.2022.2153695. 
  25. Kumar, R. and Kumar, R. (2011), "Wave propagation in transversely isotropic generalized thermoelastic half-space with voids under initial stress", Multi. Model. Mater. Struct., 7(4), 440-468. https://doi.org/ 10.1108/15736101111185306. 
  26. Love, A.E.H. (1911), "Some Problems of Geodynamics", Dover Publishing Inc., New York, USA. 
  27. Marin, M., Ochsner, A. and Bhatti, M.M. (2020), "Some results Moore-Gibson-Thompson thermoelasticity of dipolar bodies", ZAMM, 100(12), e202000090. https://doi.org/10.1002/zamm.202000090. 
  28. Marin, M., Hobiny, A. and Abbas, I. (2021), "The effects of fractional time derivatives in porothermoelastic materials using finite element method", Math., 9(14), 1606. https://doi.org/10.3390/math9141606. 
  29. Nath, S. and Sengupta, P.R. (1999), "Influence of gravity on propagation of waves in a medium in presence of a compressional source", Sadhana, 24(12), 495-505. https://doi.org/10.1007/BF02745625. 
  30. Nunziato, J.W. and Cowin, S.C. (1979), "A nonlinear theory of elastic materials with voids", Arch. Rat. Mech. Anal., 72(6), 175-201. https://doi.org/10.1007/BF00249363. 
  31. Othman, M.I.A. and Said, S.M. (2013), "Plane waves of a fiber-reinforcement magneto-thermoelastic comparison of three different theories", Int. J. Thermophys., 34(2), 366-383. https://doi.org/10.1007/s10765-013-1417-z. 
  32. Othman, M.I.A., Hasona, W.N. and Abd-Elaziz, E.M. (2015), "Effect of rotation and initial stress on generalized micro-polar thermoelastic medium with three-phase-lag", J. Comput. Theor. Nanosci., 12(9), 2030-2040. https://doi.org/ 10.1166/jctn.2015.3983. 
  33. Othman, M.I.A. and Eraki, E.E.M. (2018), "Effect of gravity on generalized thermoelastic diffusion due to laser pulse using dual-phase-lag model", Multi. Model. Mater. and Struct., 14(3), 457-481. https://doi.org/10.1108/MMMS-08-2017-0087. 
  34. Othman, M.I.A., Said, S.M. and Marin, M. (2019), "A novelmodel of plane waves of two-temperature fiber-reinforced thermoelastic medium under the effect of gravity with three phase lag model", Int. J. Numer. Meth. Heat Fluid Fl., 29(12), 4788-4806. https://doi.org/10.1108/HFF-04-2019-0359. 
  35. Othman, M.I.A., Fekry, M. and Marin, M. (2020), "Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating", Struct. Eng. Mech., 73(6), 621-629. https://doi.org/10.12989/sem.2020.73.6.621. 
  36. Pipkin, A.C. (1973), "Finite Deformations of Ideal Fiber-Reinforced Composites", (Ed.s, G.P. Sendeckyi), Composites materials, Academic, New York. 
  37. Puri, P. and Cowin, S.C. (1985), "Plane waves in linear elastic materials with voids", J. Elast., 15(6), 167-183. https://doi.org/10.1007/BF00041991. 
  38. Rogers, T.G. (1975), "Finite Deformations of Strongly Anisotropic Materials", (Eds., J.F. Hutton, J.R.A. Pearson and K. Walters), Theoretical Rheology, Applied Science Publication, London. 
  39. Roy Choudhuri, S.K. (2007), "On a thermoplastic three-phase-lag model", J. Therm. Stress, 30(3), 231-238. https://doi.org/10.1080/01495730601130919. 
  40. Said, S.M. (2016), "Influence of gravity on generalized magneto-thermoelastic medium for three-phase-lag model", J. Comput. Appl. Math., 291, 142-157. https://doi.org/10.1016/j.cam.2014.12.016. 
  41. Said, S.M. (2020), "Novel model of thermo-magneto-viscoelastic medium with variable thermal conductivity under effect of gravity", Appl. Math. Mech. Eng. Ed., 41(5), 819-832. https://doi.org/10.1007/s10483-020-2603-9. 
  42. Said, S.M. (2024a), "The effect of magnetic field and inclined load on a poro-thermoelastic medium using the three-phase-lag model", Geomech. Eng., 37(3), 243-251. https://doi.org/10.12989/gae.2024.37.3.243 
  43. Said, S.M. (2024b), "Influence of gravity, locality, and rotation on thermoelastic half space via dual model", Struct. Eng. Mech., 89(4), 375-381. https://doi.org/10.12989/sem.2024.89.4.375 
  44. Sengupta, P.R. and Nath, S. (2001), "Surface waves in fibre-reinforced anisotropic elastic media", Sadhana, 26(4), 363-370. https://doi.org/10.1007/BF02703405. 
  45. Singh, B. and Singh, S.J. (2004), "Reflection of plane waves at the free surface of a fibre-reinforced elastic half-space", Sadhana, 29(6), 249-257. https://doi.org/10.1007/BF02703774. 
  46. Singh, B. (2007), "Wave propagation in an incompressible transversely isotropic fibre-reinforced elastic media", Arch. Appl. Mech., 77(4), 253-258. https://doi.org/10.1007/s00419-006-0094-9. 
  47. Vlase, S., Nastac, C., Marin, M. and Mihalcica, M. (2017), "A method for the study of the vibration of mechanical bars systems with symmetries", Acta Tech. Napocensis, Ser. Appl. Math. Mech. Eng., 60(4), 539-544. https://atnamam.utcluj.ro/index.php/Acta/article/view/930/0. 
  48. Zenkour, A.M. (2019), "Refned multi-phase-lags theory for photothermal waves of a gravitated semiconducting half-space", Compos. Struct., 212, 346-364. https://doi.org/10.1016/j.compstruct.2019.01.015.