참고문헌
- Abd-Alla, A.M. and Ahmed, S.M. (2003), "Stonley and Rayleigh waves in a non-homogeneous orthotropic elastic medium under the influence of gravity", Appl. Math. Comput., 13(1), 187-200. https://doi.org/10.1016/S0096-3003(01)00329-0.
- Abd-Alla, A.M., Abo-Dahab, S.M. and Bayones, F.S. (2015), "Wave propagation in fibre-reinforced anisotropic thermo-elastic medium subjected to gravity field", Struct. Eng. Mech., 53(2), 277-296. https://doi.org/10.12989/sem.2015.53.2.277.
- Abouelregal, A.E. and Alesemi, M. (2022), "Evaluation of the thermal and mechanical waves in anisotropic fiber-reinforced magnetic viscoelastic solid with temperature-dependent properties using the MGT thermoelastic model", Case Stud. Therm. Eng., 36(5), 102187. https://doi.org/10.1016/j.csite.2022.102187.
- Ailawalia, P. and Narah, N.S. (2009), "Effect of rotation in generalized thermoelastic solid under the influence of gravity with an overlying infinite thermoelastic fluid", Appl. Math. Mech., 30(12), 1505-1518. https://doi.org/10.1007/s10483-009-1203-6.
- Alharbi, A.M., Said, S.M. and Othman, M.I.A. (2021a), "The effect of multi-phase-lag and coriolis acceleration on a fiber-reinforced isotropic thermoelastic medium", Steel. Compos. Struct., 39(2), 125-134. https://doi.org/10.12989/scs.2021.39.2.125.
- Alharbi, A.M., Said, S.M. and Othman, M.I.A. (2021b), "Effect of gravity on a magneto-thermoelastic porous medium with the frame of a memory-dependent derivative in the context of the 3PHL model", Steel Comp. Struct., 40(6), 881-891. https://doi.org/10.12989/scs.2021.40.6.881.
- Belfield, A.J., Rogers, T.G. and Spencer, A.J.M. (1983), "Stress in elastic plates reinforced by fiber lying in concentric circles", J. Mech. Phys. Solid., 31(1), 25-54. https://doi.org/10.1016/0022-5096(83)90018-2
- Biswas, S. (2021), "Rayleigh waves in porous orthotropic medium with phase lags", Struct. Eng. Mech., 80(3), 265-274. https://doi.org/10.12989/sem.2021.80.3.265.
- Bromwich, T.J.J.A. (1898), "On the influence of gravity on elastic waves and in particular on the vibrations of an elastic globe", Proc. Lon. Math. Soc., 30(1), 98-165. https://doi.org/10.1112/plms/s1-30.1.98.
- Ciarletta, M. and Scalia, A. (1991), "On some theorems in the linear theory of visco-elastic materials with voids", J. Elast., 25(2), 149-158. https://doi.org/10.1007/BF00042463.
- Cowin, S.C. and Nunziato, J.W. (1973), "Linear elastic materials with voids", J. Elast., 13(7), 125-147. https://doi.org/10.1007/BF00041230.
- Craig, M.S. and Hart, V.G. (1979), "The stress boundary-value problem for finite plane deformations of a fibre-reinforced material", Quar. J. Mech. Appl. Math., 32 (4), 473-498. https://doi.org/10.1093/qjmam/32.4.473.
- Dhaliwal, R.S. and Wang, J. (1994), "Domain of influence theorem in the theory of elastic materials with voids", Int. J. Eng. Sci., 32(11), 1823-1828. https://doi.org/10.1016/0020-7225(94)90111-2.
- Fahmy, M.A. (2021), "A new boundary element algorithm for a general solution of nonlinear space-time fractional dual-phase-lag bio-heat transfer problems during electromagnetic radiation", Case Stud. Therm. Eng., 25, 100918. https://doi.org/10.1016/j.csite.2021.100918.
- Fahmy, M. A. and Almehmadi, M. M. (2022a), "Boundary element analysis of rotating functionally graded anisotropic fiber-reinforced magneto-thermoelastic composites", Open Eng., 12, 313-322. https://doi.org/10.1515/eng-2022-0036.
- Fahmy, M.A. (2022b), "3D boundary element model for ultra-sonic wave propagation fractional order boundary value problems of functionally graded anisotropic fiber-reinforced plates", Fractal Fract., 6(5), 247. https://doi.org/10.3390/fractalfract6050247.
- Fahmy, M.A. (2022c), "Three-dimensional boundary element strategy for stress sensitivity of fractional-order thermoelasto-plastic ultrasonic wave propagation problems of anisotropic fiber-reinforced polymer composite material", Polymers, 14(14), 2883. https://doi.org/10.3390/polym14142883.
- Fahmy, M.A., Alsulami, M.O. and Abouelregal, A.E. (2023a), "Three-temperature boundary element modeling of ultrasound wave propagation in anisotropic viscoelastic porous media", Axioms, 12(5), 473. https://doi.org/10.3390/axioms12050473.
- Fahmy, M.A. (2023b), "A nonlinear fractional BEM model for magneto-thermo-visco-elastic ultrasound waves in temperature-dependent FGA rotating granular plates", Fractal Fract., 7(3), 214. https://doi.org/10.3390/fractalfract7030214.
- Fahmy, M.A. and Almehmadi, M.M. (2023c), "Fractional dual-phase-lag model for nonlinear viscoelastic soft tissues", Fractal Fract., 7(1), 66. https://doi.org/10.3390/fractalfract7010066.
- Fahmy, M.A. (2024), "A time-stepping DRBEM for nonlinear fractional sub-diffusion bio-heat ultrasonic wave propagation problems during electromagnetic radiation", J. Umm Al-Qura Univ. Appll. Sci., https://doi.org/10.1007/s43994-024-00178-2.
- Iesan, D. (2011), "On a theory of thermoelastic materials with voids", J. Elasticity, 104 (1), 369-384. https://doi.org/10.1007/s10659-010-9300-7.
- Jain, K., Kalkal, K.K. and Deswal, S. (2018), "Effect of heat source and gravity on a fractional order fiber reinforced thermoelastic medium", Struct. Eng. Mech., 68(2), 215-226. https://doi.org/10.12989/sem.2018.68.2.215.
- Kalkal, K.K., Deswal, S. and Poonia, R. (2024), "Two-dimensional deformations in a rotating functionally graded fiber-reinforced thermoelastic half-space with magnetic field", Mech. Based. Des. Struc., 52(3), 1543-1560. https://doi.org/10.1080/15397734.2022.2153695.
- Kumar, R. and Kumar, R. (2011), "Wave propagation in transversely isotropic generalized thermoelastic half-space with voids under initial stress", Multi. Model. Mater. Struct., 7(4), 440-468. https://doi.org/ 10.1108/15736101111185306.
- Love, A.E.H. (1911), "Some Problems of Geodynamics", Dover Publishing Inc., New York, USA.
- Marin, M., Ochsner, A. and Bhatti, M.M. (2020), "Some results Moore-Gibson-Thompson thermoelasticity of dipolar bodies", ZAMM, 100(12), e202000090. https://doi.org/10.1002/zamm.202000090.
- Marin, M., Hobiny, A. and Abbas, I. (2021), "The effects of fractional time derivatives in porothermoelastic materials using finite element method", Math., 9(14), 1606. https://doi.org/10.3390/math9141606.
- Nath, S. and Sengupta, P.R. (1999), "Influence of gravity on propagation of waves in a medium in presence of a compressional source", Sadhana, 24(12), 495-505. https://doi.org/10.1007/BF02745625.
- Nunziato, J.W. and Cowin, S.C. (1979), "A nonlinear theory of elastic materials with voids", Arch. Rat. Mech. Anal., 72(6), 175-201. https://doi.org/10.1007/BF00249363.
- Othman, M.I.A. and Said, S.M. (2013), "Plane waves of a fiber-reinforcement magneto-thermoelastic comparison of three different theories", Int. J. Thermophys., 34(2), 366-383. https://doi.org/10.1007/s10765-013-1417-z.
- Othman, M.I.A., Hasona, W.N. and Abd-Elaziz, E.M. (2015), "Effect of rotation and initial stress on generalized micro-polar thermoelastic medium with three-phase-lag", J. Comput. Theor. Nanosci., 12(9), 2030-2040. https://doi.org/ 10.1166/jctn.2015.3983.
- Othman, M.I.A. and Eraki, E.E.M. (2018), "Effect of gravity on generalized thermoelastic diffusion due to laser pulse using dual-phase-lag model", Multi. Model. Mater. and Struct., 14(3), 457-481. https://doi.org/10.1108/MMMS-08-2017-0087.
- Othman, M.I.A., Said, S.M. and Marin, M. (2019), "A novelmodel of plane waves of two-temperature fiber-reinforced thermoelastic medium under the effect of gravity with three phase lag model", Int. J. Numer. Meth. Heat Fluid Fl., 29(12), 4788-4806. https://doi.org/10.1108/HFF-04-2019-0359.
- Othman, M.I.A., Fekry, M. and Marin, M. (2020), "Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating", Struct. Eng. Mech., 73(6), 621-629. https://doi.org/10.12989/sem.2020.73.6.621.
- Pipkin, A.C. (1973), "Finite Deformations of Ideal Fiber-Reinforced Composites", (Ed.s, G.P. Sendeckyi), Composites materials, Academic, New York.
- Puri, P. and Cowin, S.C. (1985), "Plane waves in linear elastic materials with voids", J. Elast., 15(6), 167-183. https://doi.org/10.1007/BF00041991.
- Rogers, T.G. (1975), "Finite Deformations of Strongly Anisotropic Materials", (Eds., J.F. Hutton, J.R.A. Pearson and K. Walters), Theoretical Rheology, Applied Science Publication, London.
- Roy Choudhuri, S.K. (2007), "On a thermoplastic three-phase-lag model", J. Therm. Stress, 30(3), 231-238. https://doi.org/10.1080/01495730601130919.
- Said, S.M. (2016), "Influence of gravity on generalized magneto-thermoelastic medium for three-phase-lag model", J. Comput. Appl. Math., 291, 142-157. https://doi.org/10.1016/j.cam.2014.12.016.
- Said, S.M. (2020), "Novel model of thermo-magneto-viscoelastic medium with variable thermal conductivity under effect of gravity", Appl. Math. Mech. Eng. Ed., 41(5), 819-832. https://doi.org/10.1007/s10483-020-2603-9.
- Said, S.M. (2024a), "The effect of magnetic field and inclined load on a poro-thermoelastic medium using the three-phase-lag model", Geomech. Eng., 37(3), 243-251. https://doi.org/10.12989/gae.2024.37.3.243
- Said, S.M. (2024b), "Influence of gravity, locality, and rotation on thermoelastic half space via dual model", Struct. Eng. Mech., 89(4), 375-381. https://doi.org/10.12989/sem.2024.89.4.375
- Sengupta, P.R. and Nath, S. (2001), "Surface waves in fibre-reinforced anisotropic elastic media", Sadhana, 26(4), 363-370. https://doi.org/10.1007/BF02703405.
- Singh, B. and Singh, S.J. (2004), "Reflection of plane waves at the free surface of a fibre-reinforced elastic half-space", Sadhana, 29(6), 249-257. https://doi.org/10.1007/BF02703774.
- Singh, B. (2007), "Wave propagation in an incompressible transversely isotropic fibre-reinforced elastic media", Arch. Appl. Mech., 77(4), 253-258. https://doi.org/10.1007/s00419-006-0094-9.
- Vlase, S., Nastac, C., Marin, M. and Mihalcica, M. (2017), "A method for the study of the vibration of mechanical bars systems with symmetries", Acta Tech. Napocensis, Ser. Appl. Math. Mech. Eng., 60(4), 539-544. https://atnamam.utcluj.ro/index.php/Acta/article/view/930/0.
- Zenkour, A.M. (2019), "Refned multi-phase-lags theory for photothermal waves of a gravitated semiconducting half-space", Compos. Struct., 212, 346-364. https://doi.org/10.1016/j.compstruct.2019.01.015.