• Title/Summary/Keyword: normal mode analysis

Search Result 381, Processing Time 0.025 seconds

Internal Resonance and Stability Change for the Two Degree Nonlinear Coupled System (2 자유도 비선형 연성시스템에서 내부공진과 안정성 변화)

  • Kim, Myoung-Gu;Pak, Chul-Hui;Cho, Chong-Du
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.853-861
    • /
    • 2007
  • To understand the concept of dynamic motion in two degree nonlinear coupled system, free vibration not including damping and excitation is investigated with the concept of nonlinear normal mode. Stability analysis of a coupled system is conducted, and the theoretical analysis performed for the bifurcation phenomenon in the system. Bifurcation point is estimated using harmonic balance method. When the bifurcation occurs, the saddle point is always found on Poincare's map. Nonlinear phenomenon result in amplitude modulation near the saddle point and the internal resonance in the system making continuous interchange of energy. If the bifurcation in the normal mode is local, the motion remains stable for a long time even when the total energy is increased in the system. On the other hand, if the bifurcation is global, the motion in the normal mode disappears into the chaos range as the range becomes gradually large.

  • PDF

DADS 및 MSC/NASTRAN을 이용한 다물체계 유연물체의 동역학 해석

  • Kim, Chang-Bu;Baek, Yun-Gi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.63-71
    • /
    • 2001
  • This paper introduces a method for calculation of dynamic stress occurring in flexible bodies of a moving multibody system by using commercial softwares DADS for dynamic analysis and MSC/NASTRAN for finite element analysis. Three methods for model transient response analysis of a flexible body are summarized. Elastic deformation of a flexible body can be described with normal modes and static modes composed of constraint modes and residual attachment modes. The deformation modes divided into fixed-interface modes and free-interface modes can be determined by using MSC/NASTRAN and selected for dynamic analysis. The dynamic results obtained from DADS are utilized to calculate dynamic stress by using mode-displacement method or mode-acceleration method of MSC/NASTRAN. As a numerical example of the analysis, we used a three dimensional slider-crank model with a flexible connecting rod.

  • PDF

Normal Mode Approach to the Stability Analysis of Rossby-Haurwitz Wave

  • Jeong, Hanbyeol;Cheong, Hyeong Bin
    • Journal of the Korean earth science society
    • /
    • v.38 no.3
    • /
    • pp.173-181
    • /
    • 2017
  • The stability of the steady Rossby-Haurwitz wave (R-H wave) in the nondivergent barotropic model (NBM) on the sphere was investigated with the normal mode method. The linearized NBM equation with respect to the R-H wave was formulated into the eigenvalue-eigenvector problem consisting of the huge sparse matrix by expanding the variables with the spherical harmonic functions. It was shown that the definite threshold R-H wave amplitude for instability could be obtained by the normal mode method. It was revealed that some unstable modes were stationary, which tend to amplify without the time change of the spatial structure. The maximum growth rate of the most unstable mode turned out to be in almost linear proportion to the R-H wave amplitude. As a whole, the growth rate of the unstable mode was found to increase with the zonal- and total-wavenumber. The most unstable mode turned out to consist of more-than-one zonal wavenumber, and in some cases, the mode exhibited a discontinuity over the local domain of weak or vanishing flow. The normal mode method developed here could be readily extended to the basic state comprised of multiple zonalwavenumber components as far as the same total wavenumber is given.

Rovibrational Nonequilibrium of Nitrogen Behind a Strong Normal Shock Wave

  • Kim, Jae Gang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.28-37
    • /
    • 2017
  • Recent modeling of thermal nonequilibrium processes in simple molecules like hydrogen and nitrogen has indicated that rotational nonequilibrium becomes as important as vibrational nonequilibrium at high temperatures. In the present work, in order to analyze rovibrational nonequilibrium, the rotational mode is separated from the translational-rotational mode that is usually considered as an equilibrium mode in two- and multi-temperature models. Then, the translational, rotational, and electron-electronic-vibrational modes are considered separately in describing the thermochemical nonequilibrium of nitrogen behind a strong normal shock wave. The energy transfer for each energy mode is described by recently evaluated relaxation time parameters including the rotational-to-vibrational energy transfer. One-dimensional post-normal shock flow equations are constructed with these thermochemical models, and post-normal shock flow calculations are performed for the conditions of existing shock-tube experiments. In comparisons with the experimental measurements, it is shown that the present thermochemical model is able to describe the rotational and electron-electronic-vibrational relaxation processes of nitrogen behind a strong shock wave.

Dynamic Analysis of Machine Tool Structure by Mode Synthesis Method (모드합성법을 이용한 공작기계구조물의 동적 거동 해석)

  • 이영우;성활경
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.261-265
    • /
    • 2002
  • In the machining tool avoid vibration problem have an effect on high precision as well as statical and thermal characteristics. Therefore overcome this problem is essential to advance of machine tool and machining skill. Even though vibration arises owing to a variety of causes, in this paper vibration analysis of column as a major part of machine tool structures is presented. At this procedure vibration analysis applied to mode synthesis method using a attachment mode .

  • PDF

Dynamic analysis of a flexible multibody system

  • Chae Jang-Soo;Park Taw-Won;Kim J.
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.21-25
    • /
    • 2005
  • In the dynamic analysis of a mechanism, if one or more of the components are flexible, then the simulation will not be accurate because of the violation of the rigid body assumption. Mode shapes are used to represent the dynamic behavior of an elastic structure. A modal synthesis method which uses a combination of normal modes, constraint modes, and attachment modes, was used to represent effectively the elastic deformation of a flexible multibody. Since the combination of these modes should be different for each type of connecting part, the modal synthesis method was studied for the various types of interconnecting joints. In addition, the analysis procedure for the flexible body was explained. A satellite system with flexible solar panels was chosen as an example to show the effectiveness of the proposed method.

Implementation of Omni-directional Image Viewer Program for Effective Monitoring (효과적인 감시를 위한 전방위 영상 기반 뷰어 프로그램 구현)

  • Jeon, So-Yeon;Kim, Cheong-Hwa;Park, Goo-Man
    • Journal of Broadcast Engineering
    • /
    • v.23 no.6
    • /
    • pp.939-946
    • /
    • 2018
  • In this paper, we implement a viewer program that can monitor effectively using omni-directional images. The program consists of four modes: Normal mode, ROI(Region of Interest) mode, Tracking mode, and Auto-rotation mode, and the results for each mode is displayed simultaneously. In the normal mode, the wide angle image is rendered as a spherical image to enable pan, tilt, and zoom. In ROI mode, the area is displayed expanded by selecting an area. And, in Auto-rotation mode, it is possible to track the object by mapping the position of the object with the rotation angle of the spherical image to prevent the object from deviating from the spherical image in Tracking mode. Parallel programming for processing of multiple modes is performed to improve the processing speed. This has the advantage that various angles can be seen compared with surveillance system having a limited angle of view.

The Study of Stiffness Evaluation Technique for L, T Shaped Joint Structures Using Normal Modes Analysis with Lumped Mass (모드해석을 이용한 L, T 자형 구조물의 결합 강성 평가 방법에 대한 연구)

  • Hur, Deog-Jae;Jung, Jae-Yup;Cho, Yeon;Park, Tae-Won
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.975-983
    • /
    • 1999
  • This paper describes the dynamic characteristics of the joint structures in case of using the simplified beam model in the F. E. analysis. The modeling errors, when replace the shell with the beam, are investigated through F. E. normal modes analysis. Normal mode analysis were performed to obtain the natural frequencies of the L and T shaped joints with various type of channels. The results were analyzed to access the effects of the models on the accuracy of F.E. analysis by identifying the geometric factors which cause the error. The geometric factors considered are joint angle, channel length, thickness and area ratio of the hollow section to the filled one. The joint stiffness evaluation technique is developed in this study using normal modes analysis with Lumped Mass. With this method, the progressively improved results of F. E. analysis are obtained using the simplified beam model. The static and normal modes analysis are performed with the joint stiffness values obtained by the Kazunori Shimonkakis' virtual stiffness method and the proposed method and these simplified modeling errors are compared.

  • PDF

Analysis of Nonplanar Free Vibrations of a Beam by Nonlinear Normal Mode (비선형 정규모드를 이용한 보의 비평면 자유진동해석)

  • Lee, Won-Kyoung;Lee, Kyu-Soo;Pak, Chol-Hui
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.441-448
    • /
    • 2000
  • An investigation into the nonlinear free vibrations of a cantilever beam which can have not only planar motion but also nonplanar motion is made. Using Galerkin's method based on the first mode in each motion, we transform the boundary and initial value problem into an initial value problem of two-degree-of-freedom system. The system turns out to have two normal modes. By Synge's stability concept we examine the stability of each mode. In order to check validity of the stability we obtain the numerical Poincare map of the motions neighboring on each mode.

  • PDF

The effect of rotation on piezo-thermoelastic medium using different theories

  • Othman, Mohamed I.A.;Ahmed, Ethar A.A.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.649-665
    • /
    • 2015
  • The present paper attempts to investigate the propagation of plane waves in generalized piezo-thermoelastic medium under the effect of rotation. The normal mode analysis is used to obtain the expressions for the displacement components, the temperature, the stress and the strain components. Comparisons are made with the results predicted by different theories (Coupled theory, Lord-Schulman, Green-Lindsay) in the absence and presence of rotation.