DOI QR코드

DOI QR Code

Analysis of 3D dynamic interaction between Hypertube Express (HTX) and its guideway

  • Seunghwan Park (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Seung-Min Baek (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Hyung-Jo Jung (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Phill-Seung Lee (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Man-Cheol Kim (Korea Railroad Research Institute)
  • 투고 : 2024.09.20
  • 심사 : 2024.11.06
  • 발행 : 2024.11.25

초록

This paper proposes a three-dimensional (3D) dynamic interaction analysis algorithm between the Hypertube Express (HTX) and its guideway. HTX, which utilizes superconductive electromagnets, travels in a magnetically levitated state by leveraging the principles of induction and repulsion with the levitation and guidance coils of the guideway. This reduces frictional resistance, enabling high-speed travel. The guideway experiences dynamic loads due to the levitation and magnetic forces, while HTX is influenced by the irregularity and deformation of the guideway. The dynamic interaction between HTX and the guideway has a significant impact on both design and safety considerations. To address this, we aim to predict the dynamic behavior of both HTX and the guideway numerically. The system matrices of HTX and the guideway, along with their interaction forces, are calculated to perform a 3D dynamic interaction analysis. The guideway is modeled using shell finite elements, and to ensure realistic results, we apply a nonlinearly varying interaction stiffness based on the cruising speed and displacement of HTX. The irregularity of the guideway, which has a critical effect on the interaction, is incorporated into the model. The results of this analysis help to clarify the dynamic characteristics of both the HTX and its guideway. The proposed algorithm provides a foundation for the initial design of HTX and its guideway, contributing to future high-speed transportation systems.

키워드

과제정보

This research was supported by the Korea Railroad Research Institute (PK2401A1, Development of Core Technology for Hyper Tube Express) and the Korea Ministry of Land, Infrastructure and Transport (MOLIT) as [Innovative Talent Education Program for Smart City]. Seunghwan Park and Seung-Min Baek contributed equally to this work.

참고문헌

  1. Abdelrahman, A.S., Sayeed, J. and Youssef, M.Z. (2017), "Hyperloop transportation system: Analysis, design, control, and implementation", IEEE Trans. Ind. Electron., 65(9), 7427- 7436. https://doi.org/10.1109/TIE.2017.2777412. 
  2. Adina, R. (1986), ADINA Theory and Modeling Guide, ADINA R & D. 
  3. Ahmadi, E., Alexander, N.A. and Kashani, M.M. (2020), "Lateral dynamic bridge deck-pier interaction for ultra-high-speed Hyperloop train loading", Proceedings of the Institution of Civil Engineers-Bridge Engineering, 173(3), 198-206. 
  4. Bathe, K.J. (1996), Finite Element Procedures, Prestice Hall. 
  5. Braun, J., Sousa, J. and Pekardan, C. (2017), "Aerodynamic design and analysis of the hyperloop", AIAA J., 55(12), 4053-4060. https://doi.org/10.2514/1.J055634. 
  6. Choi, C., Song, M. and Yang, S. (2000), "A model for simplified 3-dimensional analysis of high-speed train vehicle (TGV)-bridge interactions", J. Comput. Struct. Eng. Inst. Korea., 13(02), 165-178. 
  7. Choi, H.G. and Lee, P.S. (2024), "The simplified MITC4+ shell element and its performance in linear and nonlinear analysis", Comput. Struct., 290, 107177. https://doi.org/10.1016/j.compstruc.2023.107177. 
  8. Chu, K., Garg, V. and Wang, T. (1986), "Impact in railway prestressed concrete bridges", J. Struct. Eng., 112(5), 1036-1051. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:5(1036). 
  9. Dudnikov, E. (2017), "Advantages of a new Hyperloop transport technology", 2017 Tenth International Conference Management of Large-Scale System Development (MLSD), 1-4. 
  10. Fryba, L. (1996), Dynamics of Railway Bridges, Thomas Telford Publishing. 
  11. Gasic, V., Zrnic, N., Obradovic, A. and Bosnjak, S. (2011), "Consideration of moving oscillator problem in dynamic responses of bridge cranes", FME Trans., 39(1), 17-24. 
  12. Janzen, R. (2017), "TransPod ultra-high-speed tube transportation: Dynamics of vehicles and infrastructure", Procedia Eng., 199, 8-17. https://doi.org/10.1016/j.proeng.2017.09.142. 
  13. Kim, M. (2003), "Development of a quasi-three dimensional train/track/bridge interaction analysis pro-gram for evaluating dynamic characteristics of high speed railway bridges", J. Comput. Struct. Eng. Inst. Korea, 16(2), 141-151. 
  14. Kim, S., Kwark, J. and Chang, S. (1999), "Bridge/train interaction analysis using 3-dimensional articulated hish-speed train model", J. Korean Soc. Civil Eng., 19(1-4), 505-516.
  15. Ko, Y., Lee, P.S. and Bathe, K.J. (2017), "A new MITC4+ shell element", Comput. Struct., 182, 404-418. https://doi.org/10.1016/j.compstruc.2016.11.004. 
  16. Lee, J.H., You, W.H., Lim, J. and Lee, C.Y. (2023), "Study on guideway tolerance and allowable load in capsule train test track through running dynamic characteristic analysis", Korean Soc. Railw., 26(7), 489-497. https://doi.org/10.7782/JKSR.2023.26.7.489. 
  17. Lim, J., Lee, C.Y., Lee, J.H., You, W., Lee, K.S. and Choi, S. (2020), "Design model of null-flux coil electrodynamic suspension for the hyperloop", Energi., 13(19), 5075. https://doi.org/10.3390/en13195075. 
  18. Ohashi, S., Ohsaki, H. and Masada, E. (1998), "Equivalent model of the side wall electrodynamic suspension system", Electr. Eng. JPN., 124(2), 63-73. https://doi.org/10.1002/(SICI)1520-6416(19980730)124:2<63::AID-EEJ8>3.0.CO;2-M. 
  19. Olsson, M. (1991), "On the fundamental moving load problem", J. Sound Vib., 145(2), 299-307. https://doi.org/10.1016/0022-460X(91)90593-9. 
  20. Opgenoord, M.M. and Caplan, P.C. (2018), "Aerodynamic design of the hyperloop concept", AIAA J., 56(11), 4261-4270. https://doi.org/10.2514/1.J057103. 
  21. Rho, H.L. and Kim, H.Y. (2022), "Planning for a sustainable regional mobility: Hypertube Express (HTX) for Korean case", Int. J. Rail Transp., 10(4), 497-515. https://doi.org/10.1080/23248378.2021.1943022. 
  22. Singh, J., Thakur, P., Chauhan, C. and Mehta, P. (2022), "A study of virgin hyperloop: future of sustainable transportation", New Challenges, Emerging Practices and Global Outlook in Service Management, 151. 
  23. Timoshenko, S. (1922), "CV. On the forced vibrations of bridges", London, Edinburgh, Dublin Philos. Mag. J. Sci., 43(257), 1018-1019. https://doi.org/10.1080/14786442208633953. 
  24. van Goeverden, K., van Arem, B. and van Nes, R. (2016), "Volume and GHG emissions of long-distance travelling by Western Europeans", Transp. Res. Part D: Transp. Environ., 45, 28-47. https://doi.org/10.1016/j.trd.2015.08.009. 
  25. White Jr, R. and Cooperrider, N. (1981), "Guideway-suspension tradeoffs in rail vehicle systems", J. Dyn. Sys., Meas., Control, 103(3), 237-244. https://doi.org/10.1115/1.3140634. 
  26. Wu, J.J., Whittaker, A. and Cartmell, M. (2000), "The use of finite element techniques for calculating the dynamic response of structures to moving loads", Comput. Struct., 78(6), 789-799. https://doi.org/10.1016/S0045-7949(00)00055-9. 
  27. Yang, Y.B., Yau, J., Yao, Z. and Wu, Y. (2004), Vehicle-Bridge Interaction Dynamics: with Applications to High-Speed Railways, World Scientific 
  28. Yoon, R., Negash, B.A., You, W., Lim, J., Lee, J., Lee, C. and Lee, K. (2021), "Capsule vehicle dynamics based on levitation coil design using equivalent model of a sidewall electrodynamic suspension system", Energi., 14(16), 4979. https://doi.org/10.3390/en14164979.