DOI QR코드

DOI QR Code

Machine learning design of R/C sections revisited

  • Aristotelis E. Charalampakis (Department of Civil Engineering, University of West Attica) ;
  • Vassilis K. Papanikolaou (School of Civil Engineering, Aristotle University of Thessaloniki)
  • Received : 2024.07.18
  • Accepted : 2024.11.04
  • Published : 2024.11.25

Abstract

This paper revisits our recent work on rapid and accurate design of reinforced concrete (R/C) columns and bridge piers using Artificial Neural Networks (ANNs). Both rectangular and circular, solid and hollow sections are treated. The new functions for rectangular sections now accommodate a much greater aspect ratio, making them suitable for all sections typically used for bridge piers, without sacrificing performance. For the first time, to the best of our knowledge, new design functions for T-beams and singly-reinforced rectangular beams are also derived. The error estimation is presented in detail using extremely extensive test sets, while auxiliary ANNs are employed to screen out improper data input. All design functions are sufficiently accurate, unconditionally stable, and orders of magnitude faster than any iterative section analysis procedure. The forward feed of the final ANNs has been translated into optimized code in all popular programming languages, which can be easily used without the need of specialized software, even on a spreadsheet.

Keywords

Acknowledgement

The authors would like to thank Prof. P. Tsopelas for providing additional computing resources.

References

  1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Zheng, X. (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467. https://doi.org/10.48550/arXiv.1603.04467.
  2. Abdellatif, S. and Raza, A. (2023), "Machine learning model for predicting ultimate capacity of FRP-reinforced normal strength concrete structural elements", Struct. Eng. Mech., 85(3), 315-335. https://doi.org/10.12989/sem.2023.85.3.315.
  3. Aflatoonian, M. and Mirhosseini, R.T. (2022), "Estimation of various amounts of kaolinite on concrete alkali-silica reactions using different machine learning methods", Struct. Eng. Mech., 83(1), 79-92. https://doi.org/10.12989/sem.2022.83.1.079.
  4. Aissa, B., Rabia, B. and Tahar, H.D. (2023), "Predicting and analysis of interfacial stress distribution in RC beams strengthened with composite sheet using artificial neural network", Struct. Eng. Mech., 87(6), 517-527. https://doi.org/10.12989/sem.2023.87.6.517.
  5. Berradia, M., Azab, M., Ahmad, Z., Accouche, O., Raza, A. and Alashker, Y. (2022), "Data-driven prediction of compressive strength of FRP-confined concrete members: an application of machine learning models", Struct. Eng. Mech., 83(4), 515-535. https://doi.org/10.12989/sem.2022.83.4.515.
  6. Bonet, J.L., Romero, M.L., Miguel, P.F. and Fernandez, M.A. (2004), "A fast stress integration algorithm for reinforced concrete sections with axial loads and biaxial bending", Comput. Struct., 82(2-3), 213-225. https://doi.org/10.1016/j.compstruc.2003.10.009.
  7. CEN, Comite Europeen de Normalisation (2004), Eurocode 2: Design of Concrete Structures-Part 1-1: General Rules and Rules for Buildings, EN 1992-1-1.
  8. Charalampakis, A.E. and Koumousis V.K. (2008), "Ultimate strength analysis of composite sections under biaxial bending and axial load", Adv. Eng. Softw., 39(11), 923-936. https://doi.org/10.1016/j.advengsoft.2008.01.007.
  9. Charalampakis, A.E. and Papanikolaou, V.K. (2021), "Machine learning design of R/C columns", Eng. Struct., 226, 111412. https://doi.org/10.1016/j.engstruct.2020.111412.
  10. Chen, S.F., Teng, J.G. and Chan, S.L. (2001), "Design of biaxially loaded short composite columns of arbitrary section", J. Struct. Eng., 127(6), 678-685. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:6(678).
  11. Chiorean, C.G. (2010), "Computerised interaction diagrams and moment capacity contours for composite steel-concrete cross-sections", Eng. Struct., 32(11), 3734-3757. https://doi.org/10.1016/j.engstruct.2010.08.019.
  12. Dauji, S. (2024), "Axial capacity of FRP reinforced concrete columns: Empirical, neural and tree based methods", Struct. Eng. Mech., 89(3), 283-300. https://doi.org/10.12989/sem.2024.89.3.283.
  13. Fafitis, A. (2001), "Interaction surfaces of reinforced-concrete sections in biaxial bending", J. Struct. Eng., 127(7), 840-846. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(840).
  14. Gao, J. and Yang, H. (2024), "An artificial neural network method for probabilistic life prediction of corroded reinforced concrete", Int. J. Fatigue, 186, 108418. https://doi.org/10.1016/j.ijfatigue.2024.108418.
  15. Haykin, S.S. (2009), Neural Networks and Learning Machines, Prentice Hall/Pearson.
  16. Haytham, Β., Rouaz, I., Ahmed, S., Rabia, B. and Daouadji, T.H. (2024), "Curvature ductility of confined HSC beams", Struct. Eng. Mech., 89(6), 579-588. https://doi.org/10.12989/sem.2024.89.6.579.
  17. Hu, J., Dong, F., Qiu, Y., Xi, L., Majdi, A. and Elhosiny Ali, H. (2022), "Ensembles of neural network with atochastic optimization algorithms in predicting concrete tensile strength", Steel Compos. Struct., 45(2), 205. https://doi.org/10.12989/scs.2022.45.2.205.
  18. Kostinakis, K.G. and Morfidis, K.E. (2020) "Optimization of the seismic performance of masonry infilled R/C buildings at the stage of design using artificial neural networks", Struct. Eng. Mech., 75(3), 295-309. https://doi.org/10.12989/sem.2020.75.3.295.
  19. Kwan, K.H. and Liauw, T.C. (1985), "Computerized ultimate strength analysis of reinforced concrete sections subjected to axial compression and biaxial bending", Comput. Struct., 21(6), 1119-1127. https://doi.org/10.1016/0045-7949(85)90166-x.
  20. Lin, S.T.K., Lu, Y., Alamdari, M.M. and Khoa, N.L.D. (2022), "Neural network based numerical model updating and verification for a short span concrete culvert bridge by incorporating Monte Carlo simulations", Struct. Eng. Mech., 81(3), 293-303. https://doi.org/10.12989/sem.2022.81.3.293.
  21. Liu, Q.F., Iqbal, M.F., Yang, J., Lu, X.Y., Zhang, P. and Rauf, M. (2021), "Prediction of chloride diffusivity in concrete using artificial neural network: Modelling and performance evaluation", Constr. Build. Mater., 268, 121082. https://doi.org/10.1016/j.conbuildmat.2020.121082.
  22. Munoz, P.R. and Hsu, C.T.T. (1997), "Biaxially loaded concrete-encased composite columns: Design equation", J. Struct. Eng., 123(9), 1163-1171. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:12(1576).
  23. Nassif, Ν., Al-Sadoon, Ζ.A., Hamad, K. and Altoubat, S. (2022) "Cost-based optimization of shear capacity in fiber reinforced concrete beams using machine learning", Struct. Eng. Mech., 83(5), 671-680. https://doi.org/10.12989/sem.2022.83.5.671.
  24. Papanikolaou, V.K. (2012), "Analysis of arbitrary composite sections in biaxial bending and axial load", Comput. Struct., 98-99, 33-54. https://doi.org/10.1016/j.compstruc.2012.02.004.
  25. Papanikolaou, V.K. and Sextos, A.G. (2016), "Design charts for rectangular R/C columns under biaxial bending: A historical review toward a Eurocode-2 compliant update", Eng. Struct., 115, 196-206. https://doi.org/10.1016/j.engstruct.2016.02.033.
  26. Pizarro, P.N. and Massone, L.M., (2021), "Structural design of reinforced concrete buildings based on deep neural networks", Eng. Struct., 241, 112377. https://doi.org/10.1016/j.engstruct.2021.112377.
  27. Quinlan, J.R. (1992), "Learning with continuous classes", Proceedings of the Fifth Australian Joint Conference on Artificial Intelligence, Eds. A. Adams and L. Sterling. Singapore. https://doi.org/10.1142/9789814536271.
  28. Rodriguez-Gutierrez, J.A. and Aristizabal-Ochoa, J.D. (2001), "Reinforced, partially, and fully prestressed slender concrete columns under biaxial bending and axial load", J. Struct. Eng., 127(7), 774-783. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(774).
  29. Sadeghpour, A. and Ozay, G. (2022), "Calculating the collapse margin ratio of RC frames using soft computing models", Struct. Eng. Mech., 83(3), 327-340. https://doi.org/10.12989/sem.2022.83.3.327.
  30. Sfakianakis, M.G. (2002), "Biaxial bending with axial force of reinforced, composite and repaired concrete sections of arbitrary shape by fiber model and computer graphics", Adv. Eng. Softw., 33(4), 227-242. https://doi.org/10.1016/S0965-9978(02)00002-9.
  31. Wang, Y. and Witten, I.H. (1996), Induction of Model Trees for Predicting Continuous Classes, 96/23, Hamilton, New Zealand.
  32. Wu, D., Li, S., Moayedi, H., Cifci, M.A., Le, B.N. and Wu, D (2022), "ANN-incorporated satin bowerbird optimizer for predicting uniaxial compressive strength of concrete", Steel Compos. Struct., 45(2), 281. https://doi.org/10.12989/scs.2022.45.2.281.
  33. Yau, C.Y., Chan, S.L. and So, A.K.W. (1993), "Biaxial bending design of arbitrarily shaped reinforced concrete column", ACI Struct. J., 90(3), 269-278. https://doi.org/10.14359/4235.
  34. Yuan, J., Ren, Q., Jia, C., Zhang, J., Fu, J. and Li, M. (2024), "Automated pixel-level crack detection and quantification using deep convolutional neural networks for structural condition assessment", Struct., 59, 105780. https://doi.org/10.1016/j.istruc.2023.105780.