Acknowledgement
The authors would like to thank Prof. P. Tsopelas for providing additional computing resources.
References
- Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Zheng, X. (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467. https://doi.org/10.48550/arXiv.1603.04467.
- Abdellatif, S. and Raza, A. (2023), "Machine learning model for predicting ultimate capacity of FRP-reinforced normal strength concrete structural elements", Struct. Eng. Mech., 85(3), 315-335. https://doi.org/10.12989/sem.2023.85.3.315.
- Aflatoonian, M. and Mirhosseini, R.T. (2022), "Estimation of various amounts of kaolinite on concrete alkali-silica reactions using different machine learning methods", Struct. Eng. Mech., 83(1), 79-92. https://doi.org/10.12989/sem.2022.83.1.079.
- Aissa, B., Rabia, B. and Tahar, H.D. (2023), "Predicting and analysis of interfacial stress distribution in RC beams strengthened with composite sheet using artificial neural network", Struct. Eng. Mech., 87(6), 517-527. https://doi.org/10.12989/sem.2023.87.6.517.
- Berradia, M., Azab, M., Ahmad, Z., Accouche, O., Raza, A. and Alashker, Y. (2022), "Data-driven prediction of compressive strength of FRP-confined concrete members: an application of machine learning models", Struct. Eng. Mech., 83(4), 515-535. https://doi.org/10.12989/sem.2022.83.4.515.
- Bonet, J.L., Romero, M.L., Miguel, P.F. and Fernandez, M.A. (2004), "A fast stress integration algorithm for reinforced concrete sections with axial loads and biaxial bending", Comput. Struct., 82(2-3), 213-225. https://doi.org/10.1016/j.compstruc.2003.10.009.
- CEN, Comite Europeen de Normalisation (2004), Eurocode 2: Design of Concrete Structures-Part 1-1: General Rules and Rules for Buildings, EN 1992-1-1.
- Charalampakis, A.E. and Koumousis V.K. (2008), "Ultimate strength analysis of composite sections under biaxial bending and axial load", Adv. Eng. Softw., 39(11), 923-936. https://doi.org/10.1016/j.advengsoft.2008.01.007.
- Charalampakis, A.E. and Papanikolaou, V.K. (2021), "Machine learning design of R/C columns", Eng. Struct., 226, 111412. https://doi.org/10.1016/j.engstruct.2020.111412.
- Chen, S.F., Teng, J.G. and Chan, S.L. (2001), "Design of biaxially loaded short composite columns of arbitrary section", J. Struct. Eng., 127(6), 678-685. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:6(678).
- Chiorean, C.G. (2010), "Computerised interaction diagrams and moment capacity contours for composite steel-concrete cross-sections", Eng. Struct., 32(11), 3734-3757. https://doi.org/10.1016/j.engstruct.2010.08.019.
- Dauji, S. (2024), "Axial capacity of FRP reinforced concrete columns: Empirical, neural and tree based methods", Struct. Eng. Mech., 89(3), 283-300. https://doi.org/10.12989/sem.2024.89.3.283.
- Fafitis, A. (2001), "Interaction surfaces of reinforced-concrete sections in biaxial bending", J. Struct. Eng., 127(7), 840-846. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(840).
- Gao, J. and Yang, H. (2024), "An artificial neural network method for probabilistic life prediction of corroded reinforced concrete", Int. J. Fatigue, 186, 108418. https://doi.org/10.1016/j.ijfatigue.2024.108418.
- Haykin, S.S. (2009), Neural Networks and Learning Machines, Prentice Hall/Pearson.
- Haytham, Β., Rouaz, I., Ahmed, S., Rabia, B. and Daouadji, T.H. (2024), "Curvature ductility of confined HSC beams", Struct. Eng. Mech., 89(6), 579-588. https://doi.org/10.12989/sem.2024.89.6.579.
- Hu, J., Dong, F., Qiu, Y., Xi, L., Majdi, A. and Elhosiny Ali, H. (2022), "Ensembles of neural network with atochastic optimization algorithms in predicting concrete tensile strength", Steel Compos. Struct., 45(2), 205. https://doi.org/10.12989/scs.2022.45.2.205.
- Kostinakis, K.G. and Morfidis, K.E. (2020) "Optimization of the seismic performance of masonry infilled R/C buildings at the stage of design using artificial neural networks", Struct. Eng. Mech., 75(3), 295-309. https://doi.org/10.12989/sem.2020.75.3.295.
- Kwan, K.H. and Liauw, T.C. (1985), "Computerized ultimate strength analysis of reinforced concrete sections subjected to axial compression and biaxial bending", Comput. Struct., 21(6), 1119-1127. https://doi.org/10.1016/0045-7949(85)90166-x.
- Lin, S.T.K., Lu, Y., Alamdari, M.M. and Khoa, N.L.D. (2022), "Neural network based numerical model updating and verification for a short span concrete culvert bridge by incorporating Monte Carlo simulations", Struct. Eng. Mech., 81(3), 293-303. https://doi.org/10.12989/sem.2022.81.3.293.
- Liu, Q.F., Iqbal, M.F., Yang, J., Lu, X.Y., Zhang, P. and Rauf, M. (2021), "Prediction of chloride diffusivity in concrete using artificial neural network: Modelling and performance evaluation", Constr. Build. Mater., 268, 121082. https://doi.org/10.1016/j.conbuildmat.2020.121082.
- Munoz, P.R. and Hsu, C.T.T. (1997), "Biaxially loaded concrete-encased composite columns: Design equation", J. Struct. Eng., 123(9), 1163-1171. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:12(1576).
- Nassif, Ν., Al-Sadoon, Ζ.A., Hamad, K. and Altoubat, S. (2022) "Cost-based optimization of shear capacity in fiber reinforced concrete beams using machine learning", Struct. Eng. Mech., 83(5), 671-680. https://doi.org/10.12989/sem.2022.83.5.671.
- Papanikolaou, V.K. (2012), "Analysis of arbitrary composite sections in biaxial bending and axial load", Comput. Struct., 98-99, 33-54. https://doi.org/10.1016/j.compstruc.2012.02.004.
- Papanikolaou, V.K. and Sextos, A.G. (2016), "Design charts for rectangular R/C columns under biaxial bending: A historical review toward a Eurocode-2 compliant update", Eng. Struct., 115, 196-206. https://doi.org/10.1016/j.engstruct.2016.02.033.
- Pizarro, P.N. and Massone, L.M., (2021), "Structural design of reinforced concrete buildings based on deep neural networks", Eng. Struct., 241, 112377. https://doi.org/10.1016/j.engstruct.2021.112377.
- Quinlan, J.R. (1992), "Learning with continuous classes", Proceedings of the Fifth Australian Joint Conference on Artificial Intelligence, Eds. A. Adams and L. Sterling. Singapore. https://doi.org/10.1142/9789814536271.
- Rodriguez-Gutierrez, J.A. and Aristizabal-Ochoa, J.D. (2001), "Reinforced, partially, and fully prestressed slender concrete columns under biaxial bending and axial load", J. Struct. Eng., 127(7), 774-783. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(774).
- Sadeghpour, A. and Ozay, G. (2022), "Calculating the collapse margin ratio of RC frames using soft computing models", Struct. Eng. Mech., 83(3), 327-340. https://doi.org/10.12989/sem.2022.83.3.327.
- Sfakianakis, M.G. (2002), "Biaxial bending with axial force of reinforced, composite and repaired concrete sections of arbitrary shape by fiber model and computer graphics", Adv. Eng. Softw., 33(4), 227-242. https://doi.org/10.1016/S0965-9978(02)00002-9.
- Wang, Y. and Witten, I.H. (1996), Induction of Model Trees for Predicting Continuous Classes, 96/23, Hamilton, New Zealand.
- Wu, D., Li, S., Moayedi, H., Cifci, M.A., Le, B.N. and Wu, D (2022), "ANN-incorporated satin bowerbird optimizer for predicting uniaxial compressive strength of concrete", Steel Compos. Struct., 45(2), 281. https://doi.org/10.12989/scs.2022.45.2.281.
- Yau, C.Y., Chan, S.L. and So, A.K.W. (1993), "Biaxial bending design of arbitrarily shaped reinforced concrete column", ACI Struct. J., 90(3), 269-278. https://doi.org/10.14359/4235.
- Yuan, J., Ren, Q., Jia, C., Zhang, J., Fu, J. and Li, M. (2024), "Automated pixel-level crack detection and quantification using deep convolutional neural networks for structural condition assessment", Struct., 59, 105780. https://doi.org/10.1016/j.istruc.2023.105780.