DOI QR코드

DOI QR Code

Experimental investigation on tensile testing of natural raw fibres using an improved single fibre test method

  • Ravi Kumar (School of Mechanical Engineering, SASTRA Deemed University) ;
  • Shaik M. Subhani (School of Mechanical Engineering, SASTRA Deemed University) ;
  • Bonda A.G. Yuvaraju (School of Mechanical Engineering, SASTRA Deemed University)
  • Received : 2021.05.16
  • Accepted : 2023.06.13
  • Published : 2024.11.25

Abstract

In the modern era, the world is grappling with unprecedented challenges posed by environmental pollution. International agencies are urging scientists and material engineers to seek out green materials and structures as solutions to this problem. Composites derived from renewable sources, such as plant-based and vegetable fibres, are increasingly being utilized in the interior composite components of automobiles, aircraft, and building construction. This work introduces an improved Single Fibre Tensile Test (SFTT) for natural fibres, which are often irregular in shape and non-uniform along their length. Conventional methods, which determine the fibre cross-section by measuring the diameter using optical microscopy, yield inaccurate properties with large standard deviations (SD). The proposed new SFTT method, based on standards set by the American Society of Textile Manufacturing, provides a more accurate assessment of the mechanical performance of fibres. Using this approach, the tensile strength of various single fibres, yarns, and fabrics was measured with an SD of less than 8%.

Keywords

References

  1. Abbishek, R., Kumar, B.R. and Subramanian, H.S. (2017), "Fatigue analysis and design optimization of aircraft's central fuselage", IOP Conf. Series: Mater. Sci. Eng., 225(1), 012031. https://doi.org/10.1088/1757-899X/225/1/012031.
  2. Alavudeen, A., Thiruchitrambalam, M., Venkateshwaran, N. and Athijayamani, A. (2011), "Review of natural fiber reinforced woven composite", Rev. Adv. Mater. Sci, 27, 146-150. http://mp.ipme.ru/e-journals/RAMS/no_22711/alavudeen.pdf.
  3. Alves, C., Silva, A.J., Reis, L.G., Freitas, M., Rodrigues, L.B. and Alves, D.E. (2010), "Ecodesign of automotive components making use of natural jute fiber composites", J. Clean. Prod., 18(4), 313-327. https://doi.org/10.1016/j.jclepro.2009.10.022.
  4. Asyraf, M.R.M., Syamsir, A., Zahari, N.M., Supian, A.B.M., Ishak, M.R., Sapuan, S.M. and Rashid, M.Z.A. (2022), "Product development of natural fibre-composites for various applications: Design for sustainability", Polym., 14(5), 920. https://doi.org/10.3390/POLYM14050920.
  5. Barczewski, M., Matykiewicz, D. and Szostak, M. (2020), "The effect of two-step surface treatment by hydrogen peroxide and silanization of flax/cotton fabrics on epoxy-based laminates thermomechanical properties and structure", J. Mater. Res. Tech., 9(6), 13813-13824. https://doi.org/10.1016/j.jmrt.2020.09.120.
  6. Barreto, A.C.H., Rosa, D.S., Fechine, P.B.A. and Mazzetto, S.E. (2011), "Properties of sisal fibers treated by alkali solution and their application into cardanol-based biocomposites", Compos. Part A: Appl. Sci. Manuf., 42(5), 492-500. https://doi.org/10.1016/j.compositesa.2011.01.008.
  7. Belaadi, A., Bourchak, M. and Aouici, H. (2016), "Mechanical properties of vegetal yarn: Statistical approach", Compos. Part B: Eng., 106, 139-153. https://doi.org/10.1016/j.compositesb.2016.09.033.
  8. Biagiotti, J.M.K J., Puglia, D. and Kenny, J.M. (2004), "A review on natural fibre-based composites-part I: structure, processing and properties of vegetable fibres", J. Natural Fib., 1(2), 37-68. https://doi.org/10.1300/J395v01n02_04.
  9. Blanchard, J.M.F.A., Sobey, A.J. and Blake, J.I.R. (2016), "Multiscale investigation into the mechanical behaviour of flax in yarn, cloth and laminate form", Compos. Part B: Eng., 84, 228-235. https://doi.org/10.1016/j.compositesb.2015.08.086.
  10. Chauhan, V., Karki, T. and Varis, J. (2022), "Review of natural fiber-reinforced engineering plastic composites, their applications in the transportation sector and processing techniques", J. Thermoplast. Compos. Mater., 35(8), 1169-1209. https://doi.org/10.1177/0892705719889095.
  11. Codispoti, R., Oliveira, D.V., Olivito, R.S., Lourenco, P.B. and Fangueiro, R. (2015), "Mechanical performance of natural fiber-reinforced composites for the strengthening of masonry", Compos. Part B: Eng., 77, 74-83. https://doi.org/10.1016/j.compositesb.2015.03.021.
  12. Engelbrecht-Wiggans, A.E. and Forster, A.L. (2023), "Analysis of strain correction procedures for single fiber tensile testing", Compos. Part A: Appl. Sci. Manuf., 167, 107411. https://doi.org/10.1016/J.COMPOSITESA.2022.107411.
  13. Faruk, O., Bledzki, A.K., Fink, H.P. and Sain, M. (2012), "Biocomposites reinforced with natural fibers: 2000-2010", Prog. Polym. Sci. 37(11), 1552-1596. https://doi.org/10.1016/j.progpolymsci.2012.04.003.
  14. Faruk, O., Bledzki, A.K., Fink, H.P. and Sain, M. (2014), "Progress report on natural fiber reinforced composites", Macromolecular Mater. Eng., 299(1), 9-26. https://doi.org/10.1002/mame.201300008.
  15. George, M., Chae, M. and Bressler, D.C. (2016), "Composite materials with bast fibres: Structural, technical, and environmental properties", Progress Mater. Sci., 83, 1-23 https://doi.org/10.1016/j.pmatsci.2016.04.002.
  16. Gholampour, A. and Ozbakkaloglu, T. (2020), "A review of natural fiber composites: Properties, modification and processing techniques, characterization, applications", J. Mater. Sci., 55(3), 829-892. https://doi.org/10.1007/s10853-019-03990-y.
  17. Gurunathan, T., Mohanty, S. and Nayak, S.K. (2015), "A review of the recent developments in biocomposites based on natural fibres and their application perspectives", Compos.Part A: Appl. Sci. Manuf., 77, 1-25.
  18. Harwood, R. and Smith, E. (2020), Testing of Natural Textile Fibres, Woodhead Publishing. https://doi.org/10.1016/j.compositesa.2015.06.007.
  19. Islam, F., Joannes, S. and Laiarinandrasana, L. (2019), "Evaluation of critical parameters in tensile strength measurement of single fibres", J. Compos. Sci., 3(3), https://doi.org/69.10.3390/JCS3030069.
  20. ISO 13934-1:2013 (2013), Tensile Properties of Fabrics - Part 1: Determination of Maximum Force and Elongation at Maximum Force Using the Strip Method.
  21. ISO 2060:1994 (1994), Yarn from Packages - Determination of Linear Density (Mass per Unit Length) by the Skein Method.
  22. ISO 2062:2009 (2009), Determination of Single-End Breaking Force and Elongation at Break Using Constant Rate of Extension (CRE) Tester.
  23. Kabir, M.M., Wang, H., Lau, K.T. and Cardona, F. (2012), "Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview", Compos. Part B: Eng., 43(7), 2883-2892. https://doi.org/10.1016/j.compositesb.2012.04.053.
  24. Kalia, S., Dufresne, A., Cherian, B.M., Kaith, B.S., Averous, L., Njuguna, J. and Nassiopoulos, E. (2011), "Cellulose-based bio-and nanocomposites: A review", Int. J. Polymer Sci., 2011(1), 837875. https://doi.org/10.1155/2011/837875.
  25. Kandachar, P. and Brouwer, R. (2001), "Applications of bioomposites in industrial products", MRS Online Proc. Lib., 702(1), 411. https://doi.org/10.1557/proc-702-u4.1.1.
  26. Kiruthika, A.V. (2017), "A review on physico-mechanical properties of bast fibre reinforced polymer composites", J. Build. Eng., 9, 91-99. https://doi.org/10.1016/j.jobe.2016.12.003.
  27. Kumar, B.R. and Hariharan, S.S. (2019), "Experimental and microstructural evaluation on mechanical properties of sisal fibre reinforced bio-composites", Steel Compos. Struct. Int. J., 33(2), 299-306. https://doi.org/10.12989/scs.2019.33.2.299.
  28. Kumar, B.R., Srimannarayana, C.N., Krishnan, K.A. and Hariharan, S.S. (2020), "Experimental evaluation on comparative mechanical properties of Jute-Flax fibre Reinforced composite structures", Struct. Eng. Mech. Int. J., 74(4), 515-520. https://doi.org/10.12989/sem.2020.74.4.515.
  29. Madival, A.S., Maddasani, S., Shetty, R. and Doreswamy, D. (2023), "Influence of chemical treatments on the physical and mechanical properties of Furcraea foetida fiber for polymer reinforcement applications", J. Nat. Fib., 20(1), 2136816. https://doi.org/10.1080/15440478.2022.2136816.
  30. Mohanty, A.K., Khan, M.A. and Hinrichsen, G. (2000), "Surface modification of jute and its influence on performance of biodegradable jute-fabric/Biopol composites", Compos. Sci. Tech., 60(7), 1115-1124. https://doi.org/10.1016/S0266-3538(00)00012-9.
  31. Nguyen, T.T. and Indraratna, B. (2023), "Natural fibre for geotechnical applications: Concepts, achievements and challenges", Sustain., 15(11), 8603. https://doi.org/10.3390/su15118603.
  32. Nishimura, A., Katayama, H., Kawahara, Y. and Sugimura, Y. (2012), "Characterization of kenaf phloem fibers in relation to stem growth", Indust. Crops Prod., 37(1), 547-552. https://doi.org/10.1016/j.indcrop.2011.07.035.
  33. Omrani, F., Wang, P., Soulat, D. and Ferreira, M. (2017), "Mechanical properties of flax-fibre-reinforced preforms and composites: Influence of the type of yarns on multi-scale characterisations", Compos. Part A: Appl. Sci. Manuf., 93, 72-81. https://doi.org/10.1016/j.compositesa.2016.11.013.
  34. Pickering, K.L., Efendy, M.A. and Le, T.M. (2016), "A review of recent developments in natural fibre composites and their mechanical performance", Compos. Part A: Appl. Sci. Manuf., 83, 98-112. https://doi.org/10.1016/J.COMPOSITESA.2015.08.038.
  35. Raghavendra, G., Ojha, S., Acharya, S.K. and Pal, S.K. (2014), "Jute fiber reinforced epoxy composites and comparison with the glass and neat epoxy composites", J. Compos. Mater., 48(20), 2537-2547. https://doi.org/10.1177/0021998313499955.
  36. Ray, D. (2015), "12 state-of-the-art applications of natural fiber composites in the industry", Nat. Fiber. Compos., 5, 319. https://doi.org/10.1201/b19062.
  37. Sabri, S., Fuadi, Z., Kurniawan, R., Rizal, S., Homma, H., Kosukegawa, H. and Miki, H. (2022), "Tensile strength and fracture behavior of single abaca fiber", J. Nat. Fiber., 19(14), 8796-8810. https://doi.org/10.1080/15440478.2021.1967832.
  38. Sebastain, S. and Divya, P.V. (2024), "Natural fibres: a sustainable material for geotextile applications", Indian Geotech. J., 1-17. https://doi.org/10.1007/S40098-023-00862-W/FIGURES/15.
  39. Shah, D.U. (2016), "Damage in biocomposites: Stiffness evolution of aligned plant fibre composites during monotonic and cyclic fatigue loading", Compos. Part A: Appl. Sci. Manuf., 83, 160-168. https://doi.org/10.1016/j.compositesa.2015.09.008.
  40. Shahzad, A. (2012), "Hemp fiber and its composites-a review", J. Compos. Mater., 46(8), 973-986. https://doi.org/10.1177/0021998311413623.
  41. Sood, M., Dharmpal, D. and Gupta, V.K. (2015), "Effect of fiber chemical treatment on mechanical properties of sisal fiber/recycled HDPE composite", Mater. Today: Proc., 2(4-5), 3149-3155. https://doi.org/10.1016/j.matpr.2015.07.103.
  42. Sreenivasan, V.S., Ravindran, D., Manikandan, V. and Narayanasamy, R. (2012), "Influence of fibre treatments on mechanical properties of short Sansevieria cylindrica/polyester composites", Mater. Des., 37, 111-121. https://doi.org/10.1016/j.matdes.2012.01.004.
  43. Standard ASTM D3822/ D3822M(2020), Test Method for Tensile Properties of Single Textile Fibers.
  44. Summerscales, J., Dissanayake, N.P., Virk, A.S. and Hall, W. (2010), "A review of bast fibres and their composites. Part 1-Fibres as reinforcements", Compos. Part A: Appl. Sci. Manufac., 41(10), 1329-1335. https://doi.org/10.1016/j.compositesa.2010.06.001.
  45. Van de Weyenberg, I., Ivens, J., De Coster, A., Kino, B., Baetens, E. and Verpoest, I. (2003), "Influence of processing and chemical treatment of flax fibres on their composites", Compos. Sci. Tech., 63(9), 1241-1246. https://doi.org/10.1016/S0266-3538(03)00093-9.
  46. Vasile, S., Vermeire, S., Vandepitte, K., Troch, V., & De Raeve, A. (2024). Effect of Weave and Weft Type on Mechanical and Comfort Properties of Hemp-Linen Fabrics. Materials, 17(7), 1650. https://doi.org/10.3390/ma17071650.
  47. Wambua, P., Ivens, J. and Verpoest, I. (2003), "Natural fibres: Can they replace glass in fibre reinforced plastics?", Compos. Sci. Tech., 63(9), 1259-1264. https://doi.org/10.1016/S0266-3538(03)00096-4.
  48. Yashas Gowda, T.G., Sanjay, M.R., Subrahmanya Bhat, K., Madhu, P., Senthamaraikannan, P. and Yogesha, B. (2018), "Polymer matrix-natural fiber composites: An overview", Cogent Eng., 5(1), 1446667. https://doi.org/10.1080/23311916.2018.1446667