DOI QR코드

DOI QR Code

Steamed Ginseng Berry Powder Ameliorates Skeletal Muscle Atrophy via Myogenic Effects

  • Jungbum Kim (Department of Chemistry, Sungkyunkwan University) ;
  • Hui-Ji Choi (College of Pharmacy, Chungnam National University) ;
  • Donghyuk Seo (Department of Chemistry, Sungkyunkwan University) ;
  • Sang-Ah Lee (Faculty of Biotechnology, College of Applied Life Sciences, Jeju national University) ;
  • Jong Beom Heo (College of Pharmacy, Chungnam National University) ;
  • Dong Hyuk Baek (College of Pharmacy, Chungnam National University) ;
  • Wonhwa Lee (Department of Chemistry, Sungkyunkwan University) ;
  • Gyu Yong Song (College of Pharmacy, Chungnam National University)
  • 투고 : 2023.09.14
  • 심사 : 2023.10.30
  • 발행 : 2024.01.28

초록

Sarcopenia is an age-related loss of muscle mass and function for which there is no approved pharmacological treatment. We tested direct efficacy by evaluating grip strength improvement in a sarcopenia mouse model rather than drug screening, which inhibits specific molecular mechanisms. Various physiological functions of ginseng berries are beneficial to the human body. The present study aimed to evaluate the efficacy and safety of steamed ginseng berry powder (SGBP). SGBP administration increased myotube diameter and suppressed the mRNA expression of sarcopenia-inducing molecules. SGBP also reduced the levels of inflammatory transcription factors and cytokines that are known to induce sarcopenia. Oral administration of SGBP improved muscle mass and physical performance in a mouse model of sarcopenia. In summary, our data suggest that SGBP is a novel therapeutic candidate for the amelioration of muscle weakness, including sarcopenia.

키워드

과제정보

This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through High value-added Food Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA)(121015033SB010).

참고문헌

  1. Frontera WR, Ochala J. 2015. Skeletal muscle: a brief review of structure and function. Calcif. Tissue Int. 96: 183-195. 
  2. Moorthi RN, Avin KG. 2017. Clinical relevance of sarcopenia in chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 26: 219-228. 
  3. Relaix F, Rocancourt D, Mansouri A, Buckingham M. 2005. A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435: 948-953. 
  4. Evans WJ. 2010. Skeletal muscle loss: cachexia, sarcopenia, and inactivity. Am. J. Clin. Nutr. 91: 1123S-1127S. 
  5. Serres I, Gautier V, Varray A, Prefaut C. 1998. Impaired skeletal muscle endurance related to physical inactivity and altered lung function in COPD patients. Chest 113: 900-905. 
  6. Schakman O, Kalista S, Barbe C, Loumaye A, Thissen JP. 2013. Glucocorticoid-induced skeletal muscle atrophy. Int. J. Biochem. Cell Biol. 45: 2163-2172. 
  7. Thomas DR. 2007. Loss of skeletal muscle mass in aging: examining the relationship of starvation, sarcopenia and cachexia. Clin. Nutr. 26: 389-399. 
  8. Millward DJ, Garlick PJ, Nnanyelugo DO, Waterlow JC. 1976. The relative importance of muscle protein synthesis and breakdown in the regulation of muscle mass. Biochem. J. 156: 185-188. 
  9. Bodine SC, Baehr LM. 2014. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am. J. Physiol. Endocrinol. Metab. 307: E469-484. 
  10. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, et al. 2004. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117: 399-412. 
  11. Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, et al. 2004. Mol. Cell 14: 395-403. 
  12. Choi J, Costa ML, Mermelstein CS, Chagas C, Holtzer S, Holtzer H. 1990. MyoD converts primary dermal fibroblasts, chondroblasts, smooth muscle, and retinal pigmented epithelial cells into striated mononucleated myoblasts and multinucleated myotubes. Proc. Natl. Acad. Sci. USA 87: 7988-7992. 
  13. Weintraub H, Tapscott SJ, Davis RL, Thayer MJ, Adam MA, Lassar AB, Miller AD. 1989. Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc. Natl. Acad. Sci. USA 86: 5434-5438. 
  14. Jaynes JB, Johnson JE, Buskin JN, Gartside CL, Hauschka SD. 1988. The muscle creatine kinase gene is regulated by multiple upstream elements, including a muscle-specific enhancer. Mol. Cell. Biol. 8: 62-70. 
  15. Miller JB. 1990. Myogenic programs of mouse muscle cell lines: expression of myosin heavy chain isoforms, MyoD1, and myogenin. J. Cell Biol. 111: 1149-1159. 
  16. Spate U, Schulze PC. 2004. Proinflammatory cytokines and skeletal muscle. Curr. Opin. Clin. Nutr. Metab. Care 7: 265-269. 
  17. Kiefer D, Pantuso T. 2003. Panax ginseng. Am. Fam. Physician 68: 1539-1542. 
  18. Leung KW, Wong AS. 2010. Pharmacology of ginsenosides: a literature review. Chin. Med. 5: 20. 
  19. Kim YJ, Yamabe N, Choi P, Lee JW, Ham J, Kang KS. 2013. Efficient thermal deglycosylation of ginsenoside Rd and its contribution to the improved anticancer activity of ginseng. J. Agric. Food Chem. 61: 9185-9191. 
  20. Bonaldo P, Sandri M. 2013. Cellular and molecular mechanisms of muscle atrophy. Dis. Model. Mech. 6: 25-39. 
  21. d'Albis A, Couteaux R, Janmot C, Roulet A, Mira JC. 1988. Regeneration after cardiotoxin injury of innervated and denervated slow and fast muscles of mammals. Myosin isoform analysis. Eur. J. Biochem. 174: 103-110. 
  22. Zammit PS. 2017. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Semin. Cell Dev Biol. 72: 19-32. 
  23. Gumucio JP, Mendias CL. 2013. Atrogin-1, MuRF-1, and sarcopenia. Endocrine. 43: 12-21. 
  24. Morley JE, Baumgartner RN, Roubenoff R, Mayer J, Nair KS. 2001. Sarcopenia. J. Lab. Clin. Med. 137: 231-243. 
  25. Adams V, Mangner N, Gasch A, Krohne C, Gielen S, Hirner S, et al. 2008. Induction of MuRF1 is essential for TNF-alpha-induced loss of muscle function in mice. J. Mol. Biol. 384: 48-59. 
  26. Espat NJ, Auffenberg T, Rosenberg JJ, Rogy M, Martin D, Fang CH, et al. 1996. Ciliary neurotrophic factor is catabolic and shares with IL-6 the capacity to induce an acute phase response. Am. J. Physiol. 271: R185-190. 
  27. Baltgalvis KA, Berger FG, Pena MM, Davis JM, White JP, Carson JA. 2009. Muscle wasting and interleukin-6-induced atrogin-I expression in the cachectic Apc ( Min/+) mouse. Pflugers Arch. 457: 989-1001. 
  28. Ryu JS, Lee HJ, Bae SH, Kim SY, Park Y, Suh HJ, Jeong YH. 2013. The bioavailability of red ginseng extract fermented by Phellinus linteus. J. Ginseng Res. 37: 108-116. 
  29. Gu Y, Wang GJ, Sun JG, Jia YW, Wang W, Xu MJ, et al. 2009. Pharmacokinetic characterization of ginsenoside Rh2, an anticancer nutrient from ginseng, in rats and dogs. Food Chem. Toxicol. 47: 2257-2268. 
  30. Liu H, Yang J, Du F, Gao X, Ma X, Huang Y, et al. 2009. Absorption and disposition of ginsenosides after oral administration of Panax notoginseng extract to rats. Drug Metab. Dispos. 37: 2290-2298.