DOI QR코드

DOI QR Code

Degradation of Triazole Fungicides by Plant Growth-Promoting Bacteria from Contaminated Agricultural Soil

  • Received : 2023.08.21
  • Accepted : 2023.10.16
  • Published : 2024.01.28

Abstract

The widespread application of triazole fungicides (TFs) in agricultural practices can result in the considerable accumulation of active compound residues in the soil and a subsequent negative impact on the soil microbiota and crop health. In this study, we isolated three TF-degrading bacterial strains from contaminated agricultural soils and identified them as Klebsiella sp., Pseudomonas sp., and Citrobacter sp. based on analysis of morphological characteristics and 16S rRNA gene sequences. The strains used three common TFs, namely hexaconazole, difenoconazole, and propiconazole, as their only sources of carbon and energy for growth in a liquid mineral salt medium, with high concentrations (~ 500 mg/l) of each TF. In addition to the ability to degrade fungicides, the isolates also exhibited plant growth-promoting characteristics, such as nitrogen fixation, indole acetic acid production, phosphate dissolution, and cellulose degradation. The synergistic combination of three bacterial isolates significantly improved plant growth and development with an increased survival rate (57%), and achieved TF degradation ranging from 85.83 to 96.59% at a concentration of approximately 50 mg/kg of each TF within 45 days in the soil-plant system. Based on these findings, the three strains and their microbial consortium show promise for application in biofertilizers, to improve soil health and facilitate optimal plant growth.

Keywords

Acknowledgement

This research was funded by the Nuclear Research Institute in 2022, code CS/22/01-01.

References

  1. Milen D. 2011. Vulnerability, risk reduction, and adaptation to climate change for Vietnam. Climate Risk and Adaptation Country Profile. Ed: The World Bank Group, Washington, DC 
  2. Trinh TQ, Ranola RF, Camacho LD, Simelton E. 2018. Determinants of farmers' adaptation to climate change in agricultural production in the central region of Vietnam. Land Use Policy 70: 224-231. 
  3. Cassou E, Tran N, Tin N, Dinh T, Nguyen C, Cao B, et al. 2017. An Overview of Agricultural Pollution in Vietnam: Summary Report 2017, Ed: World Bank, Washington, DC. 
  4. Toan PV. 2013. The situation of pesticide use and several of reduced measures for improper pesticide use in rice production in the Mekong Delta. Can Tho Univ. J. Sci. 28: 47-53. 
  5. Zaller JG, Kruse-Pla M, Schlechtriemen U, Gruber E, Peer M, Nadeem I, et al. 2022. Pesticides in ambient air, influenced by surrounding land use and weather, pose a potential threat to biodiversity and humans. Sci. Total Environ. 838: 156012. 
  6. Zubrod JP, Bundschuh M, Arts G, Bruhl CA, Imfeld G, Knabel A, et al. 2019. Fungicides: an overlooked pesticide class? Environ. Sci. Technol. 53: 3347-3365. 
  7. Gupta A, Gupta R, Singh RL. 2017. Microbes and Environment, pp. 43-84. In Singh RL (ed.), Principles and Applications of Environmental Biotechnology for a Sustainable Future, Ed. Springer Singapore, Singapore 
  8. Roman DL, Voiculescu DI, Filip M, Ostafe V, Isvoran A. 2021. Effects of triazole fungicides on soil microbiota and on the activities of enzymes found in soil: a review. Agriculture 11: 893. 
  9. Huang T, Tang X, Luo K, Wu Y, Hou X, Tang S. 2021. An overview of graphene-based nanoadsorbent materials for environmental contaminants detection. TrAC Trends Anal. Chem. 139: 116255. 
  10. Duong HT, Doan NH, Trinh HT, Kadokami K. 2021. Occurrence and risk assessment of herbicides and fungicides in atmospheric particulate matter in Hanoi, Vietnam. Sci. Total Environ. 787: 147674. 
  11. Sanchez CL, Souders CL, Pena-Delgado CJ, Nguyen KT, Kroyter N, Ahmadie NE, et al. 2020. Neurotoxicity assessment of triazole fungicides on mitochondrial oxidative respiration and lipids in differentiated human SH-SY5Y neuroblastoma cells. NeuroToxicol. 80: 76-86. 
  12. Toan PV, Sebesvari Z, Blasing M, Rosendahl I, Renaud FG. 2013. Pesticide management and their residues in sediments and surface and drinking water in the Mekong Delta, Vietnam. Sci. Total Environ. 452-453: 28-39. 
  13. Munoz-Leoz B, Ruiz-Romera E, Antiguedad I, Garbisu C. 2011. Tebuconazole application decreases soil microbial biomass and activity. Soil Biol. Biochem. 43: 2176-2183. 
  14. Bacmaga M, Wyszkowska J, Kucharski J. 2016. The effect of the Falcon 460 EC fungicide on soil microbial communities, enzyme activities and plant growth. Ecotoxicology 25: 1575-1587. 
  15. Wang C, Wang F, Zhang Q, Liang W. 2016. Individual and combined effects of tebuconazole and carbendazim on soil microbial activity. Eur. J. Soil Biol. 72: 6-13. 
  16. Khan S, Shahid M, Khan MS, Syed A, Bahkali AH, Elgorban AM, et al. 2020. Fungicide-tolerant plant growth-promoting rhizobacteria mitigate physiological disruption of white radish caused by fungicides used in the field cultivation. Int. J. Environ. Res. Public Health 17: 7251. 
  17. Ju C, Xu J, Wu X, Dong F, Liu X, Tian C, et al. 2017. Effects of hexaconazole application on soil microbes community and nitrogen transformations in paddy soils. Sci. Total Environ. 609: 655-663. 
  18. Munoz-Leoz B, Garbisu C, Charcosset JY, Sanchez-Perez JM, Antiguedad I, Ruiz-Romera E. 2013. Non-target effects of three formulated pesticides on microbially-mediated processes in a clay-loam soil. Sci. Total Environ. 449: 345-354. 
  19. Satapute P, Kamble MV, Adhikari SS, Jogaiah S. 2019. Influence of triazole pesticides on tillage soil microbial populations and metabolic changes. Sci. Total Environ. 651: 2334-2344. 
  20. Lopes MJdS, Dias-Filho MB, Gurgel ESC. 2021. Successful plant growth-promoting microbes: inoculation methods and abiotic factors. Front. Sustain. Food Syst. 5: 606454. 
  21. Hapsoh, Dini IR, Salbiah D, Tryana S. 2020. Application of biofertilizer consortium formulation of cellulolytic bacteria based on organic liquid waste on yield of upland rice (Oryza sativa L.). IOP Conference Series: Earth Environ. Sci. 454: 012142. 
  22. Raffa CM, Chiampo F. 2021. Bioremediation of agricultural soils polluted with pesticides: a review. Bioengineering 8: 92. 
  23. Saha L, Tiwari J, Bauddh K, Ma Y. 2021. Recent developments in microbe-plant-based bioremediation for tackling heavy meta-lpolluted soils. Front. Microbiol. 12: 731723. 
  24. Bhatt P, Gangola S, Bhandari G, Zhang W, Maithani D, Mishra S, et al. 2021. New insights into the degradation of synthetic pollutants in contaminated environments. Chemosphere 268: 128827. 
  25. Sharma S, Tiwari S, Hasan A, Saxena V, Pandey LM. 2018. Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils. 3Biotech 8: 216. 
  26. Akbar S, Sultan S. 2016. Soil bacteria showing a potential of chlorpyrifos degradation and plant growth enhancement. Braz. J. Microbiol. 47: 563-570. 
  27. Kwon GS, Sohn HY, Shin KS, Kim E, Seo BI. 2005. Biodegradation of the organochlorine insecticide, endosulfan, and the toxic metabolite, endosulfan sulfate, by Klebsiella oxytoca KE-8. Appl. Microbiol. Biotechnol. 67: 845-850. 
  28. Chaussonnerie S, Saaidi PL, Ugarte E, Barbance A, Fossey A, Barbe V, et al. 2016. Microbial degradation of a recalcitrant pesticide: chlordecone. Front. Microbiol. 7: 2025. 
  29. Liu Z, Zhou A, Wang S, Cheng S, Yin X, Yue X. 2021. Quorum sensing shaped microbial consortia and enhanced hydrogen recovery from waste activated sludge electro-fermentation on basis of free nitrous acid treatment. Sci. Total Environ. 766: 144348. 
  30. Bakshi P, Sharma P, Chouhan R, Mir BA, Gandhi SG, Bhardwaj R, et al. 2023. Interactive effect of 24-epibrassinolide and plant growth promoting rhizobacteria inoculation restores photosynthetic attributes in Brassica juncea L. under chlorpyrifos toxicity. Environ. Pollut. 320: 120760. 
  31. Al-Shwaiman HA, Shahid M, Elgorban AM, Siddique KHM, Syed A. 2022. Beijerinckia fluminensis BFC-33, a novel multi-stress-tolerant soil bacterium: deciphering the stress amelioration, phytopathogenic inhibition and growth promotion in Triticum aestivum (L.). Chemosphere. 295: 133843. 
  32. Zhang T, Zhang H. 2022. Microbial onsortia are needed to degrade soil pollutants. Microorganisms 10: 261. 
  33. Wu M, Tang J, Zhou X, Lei D, Zeng C, Ye H, et al. 2022. Isolation of dibutyl phthalate-degrading bacteria and its coculture with Citrobacter freundii CD-9 to degrade fenvalerate. J. Microbiol. Biotechnol. 32: 176-186. 
  34. Ali SS, Kornaros M, Manni A, Sun J, El-Shanshoury AE-RR, Kenawy E-R, et al. 2020. Enhanced anaerobic digestion performance by two artificially constructed microbial consortia capable of woody biomass degradation and chlorophenols detoxification. J. Hazard. Mater. 389: 122076. 
  35. Zhang C, Wu X, Wu Y, Li J, An H, Zhang T. 2021. Enhancement of dicarboximide fungicide degradation by two bacterial cocultures of Providencia stuartii JD and Brevundimonas naejangsanensis J3. J. Hazard. Mater. 403: 123888. 
  36. Shelton DR, Somich CJ. 1988. Isolation and characterization of coumaphos-metabolizing bacteria from cattle dip. Appl. Environ. Microbiol. 54: 2566-2571. 
  37. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703. 
  38. Rao NSS. 1995. Soil microorganisms and plant growth, pp. Ed. Science Publishers, Inc. 
  39. Mackie TJ, McCartney JE. 1989. Practical medical microbiology, pp. 14 Ed., Churchill Livingstone, New York. 
  40. Kamnev AA, Kuzmann EJIL. 1997. Mossbauer spectroscopic study of the interaction of indole-3-acetic acid with iron (III) in aqueous solution. Biochem. Mol. Biol. Int. 41: 575-581. 
  41. Bric JM, Bostock RM, Silverstone SE. 1991. Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl. Environ. Microbiol. 57: 535-538. 
  42. Chakraborty U, Chakraborty BN, Basnet M, Chakraborty AP. 2009. Evaluation of Ochrobactrum anthropi TRS-2 and its talc based formulation for enhancement of growth of tea plants and management of brown root rot disease. J. Appl. Microbiol. 107: 625-634. 
  43. Gupta P, Samant K, Sahu A. 2012. Isolation of cellulose-degrading bacteria and determination of their cellulolytic potential. Int. J. Microbiol. 2012: 578925. 
  44. Lu WJ, Wang HT, Nie YF, Wang ZC, Huang DY, Qiu XY, et al. 2004. Effect of inoculating flower stalks and vegetable waste with ligno-cellulolytic microorganisms on the composting process. J. Environ. Sci. Health Part B. 39: 871-887. 
  45. Hendricks CW, Doyle JD, Hugley B. 1995. A new solid medium for enumerating cellulose-utilizing bacteria in soil. Appl. Environ. Microbiol. 61: 2016-2019. 
  46. Maznah Z, Halimah M, Ismail S, Idris AS. 2015. Dissipation of the fungicide hexaconazole in oil palm plantation. Environ. Sci. Pollut. Res. 22: 19648-19657. 
  47. Maznah Z, Halimah M, Shitan M, Kumar Karmokar P, Najwa S. 2017. Prediction of hexaconazole concentration in the top most layer of oil palm plantation soil using Exploratory Data Analysis (EDA). PLoS One 12: e0166203. 
  48. Xu J, Li W, Chen X, Zhou Y. 2010. Klebsiella alba sp. nov., a novel pesticide-tolerant bacterium from a heavily polluted environment. J. Gen. Appl. Microbiol. 56: 241-247. 
  49. Lopes FM, Batista KA, Batista GLA, Mitidieri S, Bataus LAM, Fernandes KF. 2010. Biodegradation of epoxyconazole and piraclostrobin fungicides by Klebsiella sp. from soil. World J. Microbiol. Biotechnol. 26: 1155-1161. 
  50. Tang J, Lei D, Wu M, Hu Q, Zhang Q. 2020. Biodegradation and metabolic pathway of fenvalerate by Citrobacter freundii CD-9. AMB Express 10: 194. 
  51. An X, Tian C, Xu J, Dong F, Liu X, Wu X, et al. 2020. Characterization of hexaconazole-degrading strain Sphingobacterium multivorum and analysis of transcriptome for biodegradation mechanism. Sci. Total Environ. 722: 137171. 
  52. Jinwei Z, Jian H, Zhe W, Yingying N, Shunpeng L. 2009. Isolation, identification and characteristics of a difenoconazole-degrading bacterial strain B2. China Environ. Sci. 29: 42-46. 
  53. Satapute P, Jogaiah S. 2022. A biogenic microbial biosurfactin that degrades difenoconazole fungicide with potential antimicrobial and oil displacement properties. Chemosphere 286: 131694. 
  54. Satapute P, Kaliwal B. 2016. Biodegradation of propiconazole by newly isolated Burkholderia sp. strain BBK_9. 3Biotech 6: 110. 
  55. Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2: 587. 
  56. Prasad P, Kalam S, Sharma NK, Podile AR, Das SN. 2022. Phosphate solubilization and plant growth promotion by two Pantoea strains isolated from the flowers of Hedychium coronarium L. Front. Agron. 4. doi.org/10.3389/fagro.2022.990869. 
  57. Jain D, Ravina, Bhojiya AA, Chauhan S, Rajpurohit D, Mohanty SR. 2021. Polyphasic characterization of plant growth promoting cellulose degrading bacteria isolated from organic manures. Curr. Microbiol. 78: 739-748. 
  58. Zhang G, Dong Y. 2022. Design and application of an efficient cellulose-degrading microbial consortium and carboxymethyl cellulase production optimization. Front. Microbiol. 13: 957444. 
  59. Bedini A, Mercy L, Schneider C, Franken P, Lucic-Mercy E. 2018. Unraveling the initial plant hormone signaling, metabolic mechanisms and plant defense triggering the endomycorrhizal symbiosis behavior. Front. Plant Sci. 9: 1800. 
  60. Kuan KB, Othman R, Abdul Rahim K, Shamsuddin ZH. 2016. Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLoS One 11: e0152478. 
  61. Qessaoui R, Bouharroud R, Furze JN, El Aalaoui M, Akroud H, Amarraque A, et al. 2019. Applications of new rhizobacteria Pseudomonas isolates in agroecology via fundamental processes complementing plant growth. Sci. Rep. 9: 12832. 
  62. Ajmal AW, Yasmin H, Hassan MN, Khan N, Jan BL, Mumtaz S. 2022. Heavy metal-resistant plant growth-promoting Citrobacter werkmanii strain WWN1 and Enterobacter cloacae strain JWM6 enhance wheat (Triticum aestivum L.) growth by modulating physiological attributes and some key antioxidants under multi-metal stress. Front. Microbiol. 13: 815704. 
  63. Zhang H, Song J, Zhang Z, Zhang Q, Chen S, Mei J, et al. 2021. Exposure to fungicide difenoconazole reduces the soil bacterial community diversity and the co-occurrence network complexity. J. Hazard. Mater. 405: 124208. 
  64. Betancourt-Portela JM, Bautista-Duarte PA, Narvaez-Florez S, Parra-Lozano JP. 2018. Biodegradation of chlorothalonil fungicide in coastal areas of the colombian caribbean suitable for banana crops . Tecciencia 13: 19-28. 
  65. Satapute P, Kaliwal B. 2016. Biodegradation of the fungicide propiconazole by Pseudomonas aeruginosa PS-4 strain isolated from a paddy soil. Ann. Microbiol. 66: 1355-1365. 
  66. Kumar G, Lal S, Maurya SK, Bhattacherjee AK, Chaudhary P, Gangola S, et al. 2021. Exploration of Klebsiella pneumoniae M6 for paclobutrazol degradation, plant growth attributes, and biocontrol action under subtropical ecosystem. PLoS One 16: e0261338. 
  67. Ahad R, Zhou T, Lepp D, Pauls KP. 2017. Draft genome sequence of Citrobacter freundii strain A47, resistant to the mycotoxin deoxynivalenol. Genome Announc 5: e00019-17. 
  68. Obanda DN, Shupe TFJW, science f. 2009. Biotransformation of tebuconazole by microorganisms: evidence of a common mechanism. Wood Fiber Sci. 41: 157-167 
  69. Ma. Laura O-H, Enrique S-S, Edgar D-G, Maria Luisa C-G. 2013. Pesticide Biodegradation: Mechanisms, Genetics and Strategies to Enhance the Process, pp. Ch. 10. In Rolando C, Francisca R (eds.), Biodegradation, Ed. IntechOpen, Rijeka