Acknowledgement
This work was supported by grants from the National Research Foundation (NRF) of Korea, which is funded by the Korean government (NRF-2018R1A5A2024418, NRF-2019R1A2C2007041, NRF-2022M3A9F3082330, and RS-2022-00164722). The cartoon in graphical abstract was created with BioRender.com.
References
- Bogaert D, De Groot R, Hermans PW. 2004. Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect. Dis. 4: 144-154.
- Magee AD, Yother J. 2001. Requirement for capsule in colonization by Streptococcus pneumoniae. Infect. Immun. 69: 3755-3761.
- van Tonder AJ, Gladstone RA, Lo SW, Nahm MH, du Plessis M, Cornick J, et al. 2019. Putative novel cps loci in a large global collection of pneumococci. Microb. Genom. 5: e000274.
- Daniels CC, Rogers PD, Shelton CM. 2016. A review of pneumococcal vaccines: current polysaccharide vaccine recommendations and future protein antigens. J. Pediatr. Pharmacol. Ther. 21: 27-35.
- Centers for Disease Control and Prevention. 2020. Active bacterial core surveillance report, emerging infections program network, Streptococcus pneumoniae, 2020. Available from http://www.cdc.gov/abcs/downloads/SPN_Surveillance_Report_2020.pdf. Accessed July 14, 2023.
- Lochen A, Croucher NJ, Anderson RM. 2020. Divergent serotype replacement trends and increasing diversity in pneumococcal disease in high income settings reduce the benefit of expanding vaccine valency. Sci. Rep. 10: 18977.
- Keller LE, Robinson DA, McDaniel LS. 2016. Nonencapsulated Streptococcus pneumoniae: emergence and pathogenesis. mBio 7: e01792.
- Cilloniz C, Garcia-Vidal C, Ceccato A, Torres A. 2018. Antimicrobial resistance among Streptococcus pneumoniae, pp. 13-38. In Fong IW, Shlaes D, Drlica K (eds.), Antimicrobial Resistance in the 21st Century, Ed. Springer, Cham.
- Xu L, Fang J, Ou D, Xu J, Deng X, Chi G, et al. 2023. Therapeutic potential of kaempferol on Streptococcus pneumoniae infection. Microbes Infect. 25: 105058.
- Ortiz-Miravalles L, Sanchez-Angulo M, Sanz JM, Maestro B. 2023. Drug repositioning as a therapeutic strategy against Streptococcus pneumoniae: cell membrane as potential target. Int. J. Mol. Sci. 24: 5831.
- Jacobson A, Lam L, Rajendram M, Tamburini F, Honeycutt J, Pham T, et al. 2018. A gut commensal-produced metabolite mediates colonization resistance to Salmonella infection. Cell Host Microbe. 24: 296-307. e7.
- Macfarlane S, Macfarlane GT. 2003. Regulation of short-chain fatty acid production. Proc. Nutr. Soc. 62: 67-72.
- Qiqiang L, Huanxin M, Xuejun G. 2012. Longitudinal study of volatile fatty acids in the gingival crevicular fluid of patients with periodontitis before and after nonsurgical therapy. J. Periodontal Res. 47: 740-749.
- Sulaiman I, Wu BG, Li Y, Tsay JC, Sauthoff M, Scott AS, et al. 2021. Functional lower airways genomic profiling of the microbiome to capture active microbial metabolism. Eur. Respir. J. 58: 2003434.
- Park JW, Kim HY, Kim MG, Jeong S, Yun CH, Han SH. 2019. Short-chain fatty acids inhibit Staphylococcal lipoprotein-induced nitric oxide production in murine macrophages. Immune Netw. 19: e9.
- Parada Venegas D, De la Fuente MK, Landskron G, Gonzalez MJ, Quera R, Dijkstra G, et al. 2019. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 10: 277.
- Akuzum B, Lee J-Y. 2022. Context-dependent regulation of type17 immunity by microbiota at the intestinal barrier. Immune Netw. 22: e46.
- McHan F, Shotts EB. 1993. Effect of short-chain fatty acids on the growth of Salmonella typhimurium in an in vitro system. Avian Dis. 37: 396-398.
- Lamas A, Regal P, Vazquez B, Cepeda A, Franco CM. 2019. Short chain fatty acids commonly produced by gut microbiota influence Salmonella enterica motility, biofilm formation, and gene expression. Antibiotics (Basel) 8: 265.
- Jeong S, Kim HY, Kim AR, Yun CH, Han SH. 2019. Propionate ameliorates Staphylococcus aureus skin infection by attenuating bacterial growth. Front. Microbiol. 10: 1363.
- Park T, Im J, Kim AR, Lee D, Jeong S, Yun CH, et al. 2021. Short-chain fatty acids inhibit the biofilm formation of Streptococcus gordonii through negative regulation of competence-stimulating peptide signaling pathway. J. Microbiol. 59: 1142-1149.
- Dillard JP, Vandersea MW, Yother J. 1995. Characterization of the cassette containing genes for type 3 capsular polysaccharide biosynthesis in Streptococcus pneumoniae. J. Exp. Med. 181: 973-983.
- Seo HS, Xiong YQ, Mitchell J, Seepersaud R, Bayer AS, Sullam PM. 2010. Bacteriophage lysin mediates the binding of Streptococcus mitis to human platelets through interaction with fibrinogen. PLoS Pathog. 6: e1001047.
- Alloing G, Martin B, Granadel C, Claverys JP. 1998. Development of competence in Streptococcus pneumonaie: pheromone autoinduction and control of quorum sensing by the oligopeptide permease. Mol. Microbiol. 29: 75-83.
- Inzana TJ, Champion A. 2007. Use of an inhibition enzyme-linked immunosorbent assay for quantification of capsular polysaccharide or proteins in vaccines. Clin. Vaccine. Immunol. 14: 323-327.
- Gao P, Duan W, Shi H, Wang Q. 2023. Silencing circPalm2 inhibits sepsis-induced acute lung injury by sponging miR-376b-3p and targeting MAP3K1. Toxicol. Res. 39: 275-294.
- Grant LR, Slack MPE, Theilacker C, Vojicic J, Dion S, Reinert R-R, et al. 2022. Distribution of serotypes causing invasive pneumococcal disease in children from high-income countries and the impact of pediatric pneumococcal vaccination. Clin. Infect. Dis. 76: e1062-e1070.
- Musher DM, Anderson R, Feldman C. 2022. The remarkable history of pneumococcal vaccination: an ongoing challenge. Pneumonia. 14: 5.
- Du QQ, Shi W, Yu D, Yao KH. 2021. Epidemiology of non-vaccine serotypes of Streptococcus pneumoniae before and after universal administration of pneumococcal conjugate vaccines. Hum. Vaccin. Immunother. 17: 5628-5637.
- Kim SH, Chung DR, Song JH, Baek JY, Thamlikitkul V, Wang H, et al. 2020. Changes in serotype distribution and antimicrobial resistance of Streptococcus pneumoniae isolates from adult patients in Asia: emergence of drug-resistant non-vaccine serotypes. Vaccine 38: 6065-6073.
- Hill CH. 1952. Studies on the inhibition of growth of Streptococcus faecalis by sodium propionate. J. Biol. Chem. 199: 329-332.
- Park T, Im J, Kim AR, Lee D, Jeong S, Yun CH, et al. 2022. Propionate attenuates growth of oral Streptococci through enhancing methionine biosynthesis. J. Microbiol. Biotechnol. 32: 1234-1244.
- Jeong S, Lee Y, Yun CH, Park OJ, Han SH. 2019. Propionate, together with triple antibiotics, inhibits the growth of Enterococci. J. Microbiol. 57: 1019-1024.
- Roe AJ, O'Byrne C, McLaggan D, Booth IR. 2002. Inhibition of Escherichia coli growth by acetic acid: a problem with methionine biosynthesis and homocysteine toxicity. Microbiology (Reading) 148: 2215-2222.
- Yonezawa H, Osaki T, Hanawa T, Kurata S, Zaman C, Woo TDH, et al. 2012. Destructive effects of butyrate on the cell envelope of Helicobacter pylori. J. Med. Microbiol. 61: 582-589.
- Howard CJ, Glynn AA. 1971. The virulence for mice of strains of Escherichia coli related to the effects of K antigens on their resistance to phagocytosis and killing by complement. Immunology 20: 767-777.
- Morais V, Dee V, Suarez N. 2018. Purification of capsular polysaccharides of Streptococcus pneumoniae: traditional and new methods. Front. Bioeng. Biotechnol. 6: 145.
- Melchiorre S, Camilli R, Pietrantoni A, Moschioni M, Berti F, Del Grosso M, et al. 2012. Point mutations in wchA are responsible for the non-typability of two invasive Streptococcus pneumoniae isolates. Microbiology (Reading) 158: 338-344.
- Luck JN, Tettelin H, Orihuela CJ. 2020. Sugar-coated killer: serotype 3 pneumococcal disease. Front. Cell. Infect. Microbiol. 10: 613287.
- Muller A, Salmen A, Aebi S, de Gouveia L, von Gottberg A, Hathaway LJ. 2020. Pneumococcal serotype determines growth and capsule size in human cerebrospinal fluid. BMC Microbiol. 20: 16.
- Weiser JN, Austrian R, Sreenivasan PK, Masure HR. 1994. Phase variation in pneumococcal opacity: relationship between colonial morphology and nasopharyngeal colonization. Infect. Immun. 62: 2582-2589.
- Hyams C, Yuste J, Bax K, Camberlein E, Weiser JN, Brown JS. 2010. Streptococcus pneumoniae resistance to complement-mediated immunity is dependent on the capsular serotype. Infect. Immun. 78: 716-725.
- Gantois I, Ducatelle R, Pasmans F, Haesebrouck F, Hautefort I, Thompson A, et al. 2006. Butyrate specifically down-regulates salmonella pathogenicity island 1 gene expression. Appl. Environ. Microbiol. 72: 946-949.
- Raqib R, Sarker P, Bergman P, Ara G, Lindh M, Sack DA, et al. 2006. Improved outcome in shigellosis associated with butyrate induction of an endogenous peptide antibiotic. Proc. Natl. Acad. Sci. USA 103: 9178-9183.
- Sarker P, Ahmed S, Tiash S, Rekha RS, Stromberg R, Andersson J, et al. 2011. Phenylbutyrate counteracts Shigella mediated downregulation of cathelicidin in rabbit lung and intestinal epithelia: a potential therapeutic strategy. PLoS One 6: e20637.
- Rekha RS, Mily A, Sultana T, Haq A, Ahmed S, Mostafa Kamal SM, et al. 2018. Immune responses in the treatment of drug-sensitive pulmonary tuberculosis with phenylbutyrate and vitamin D(3) as host directed therapy. BMC Infect. Dis. 18: 303.
- Coussens AK, Wilkinson RJ, Martineau AR. 2015. Phenylbutyrate is bacteriostatic against Mycobacterium tuberculosis and regulates the macrophage response to infection, synergistically with 25-hydroxy-vitamin D3. PLoS Pathog. 11: e1005007.
- Bekele A, Gebreselassie N, Ashenafi S, Kassa E, Aseffa G, Amogne W, et al. 2018. Daily adjunctive therapy with vitamin D(3) and phenylbutyrate supports clinical recovery from pulmonary tuberculosis: a randomized controlled trial in Ethiopia. J. Intern. Med. 284: 292-306.