과제정보
The authors are indebted to all the members of the KH lab for helpful discussion.
참고문헌
- Qiu J, Hirschi KK. Endothelial cell development and its application to regenerative medicine. Circ Res 2019;125:489-501. https://doi.org/10.1161/CIRCRESAHA.119.311405
- Potente M, Makinen T. Vascular heterogeneity and specialization in development and disease. Nat Rev Mol Cell Biol 2017;18:477-94. https://doi.org/10.1038/nrm.2017.36
- Trimm E, Red-Horse K. Vascular endothelial cell development and diversity. Nat Rev Cardiol 2023;20:197-210. https://doi.org/10.1038/s41569-022-00770-1
- Liu X, Uemura A, Fukushima Y, Yoshida Y, Hirashima M. Semaphorin 3G provides a repulsive guidance cue to lymphatic endothelial cells via Neuropilin-2/PlexinD1. Cell Rep 2016;17:2299-311. https://doi.org/10.1016/j.celrep.2016.11.008
- Chen J, He J, Ni R, Yang Q, Zhang Y, Luo L. Cerebrovascular injuries induce lymphatic invasion into brain parenchyma to guide vascular regeneration in zebrafish. Dev Cell 2019;49:697-710 e5. https://doi.org/10.1016/j.devcel.2019.03.022
- Chiang IKN, Graus MS, Kirschnick N, et al. The blood vasculature instructs lymphatic patterning in a SOX7-dependent manner. EMBO J 2023;42:e109032. https://doi.org/10.15252/embj.2021109032
- Srinivasan RS, Dillard ME, Lagutin OV, et al. Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature. Genes Dev 2007;21:2422-32. https://doi.org/10.1101/gad.1588407
- Klotz L, Norman S, Vieira JM, et al. Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature 2015;522:62-7. https://doi.org/10.1038/nature14483
- Martinez-Corral I, Ulvmar MH, Stanczuk L, et al. Nonvenous origin of dermal lymphatic vasculature. Circ Res 2015;116:1649-54. https://doi.org/10.1161/CIRCRESAHA.116.306170
- Pichol-Thievend C, Betterman KL, Liu X, et al. A blood capillary plexus-derived population of progenitor cells contributes to genesis of the dermal lymphatic vasculature during embryonic development. Development 2018;145:dev160184. https://doi.org/10.1242/dev.160184
- Maruyama K, Miyagawa-Tomita S, Mizukami K, Matsuzaki F, Kurihara H. Isl1-expressing non-venous cell lineage contributes to cardiac lymphatic vessel development. Dev Biol 2019;452:134-43. https://doi.org/10.1016/j.ydbio.2019.05.002
- Lioux G, Liu X, Temino S, et al. A second heart field-derived vasculogenic niche contributes to cardiac lymphatics. Dev Cell 2020;52:350-63 e6. https://doi.org/10.1016/j.devcel.2019.12.006
- Aquino JB, Sierra R, Montaldo LA. Diverse cellular origins of adult blood vascular endothelial cells. Dev Biol 2021;477:117-32. https://doi.org/10.1016/j.ydbio.2021.05.010
- Stone OA, Stainier DYR. Paraxial mesoderm is the major source of lymphatic endothelium. Dev Cell 2019;50:247-55e3. https://doi.org/10.1016/j.devcel.2019.04.034
- Lenti E, Genovese L, Bianchessi S, et al. Fate mapping and scRNA sequencing reveal origin and diversity of lymph node stromal precursors. Immunity 2022;55:606-22 e6. https://doi.org/10.1016/j.immuni.2022.03.002
- Yan MS, Marsden PA. Epigenetics in the vascular endothelium: looking from a different perspective in the epigenomics era. Arterioscler Thromb Vasc Biol 2015;35:2297-306. https://doi.org/10.1161/ATVBAHA.115.305043
- Tacconi C, He Y, Ducoli L, Detmar M. Epigenetic regulation of the lineage specificity of primary human dermal lymphatic and blood vascular endothelial cells. Angiogenesis 2021;24:67-82. https://doi.org/10.1007/s10456-020-09743-9
- Nguyen AT, He J, Taranova O, Zhang Y. Essential role of DOT1L in maintaining normal adult hematopoiesis. Cell Res 2011;21:1370-3. https://doi.org/10.1038/cr.2011.115
- Nguyen AT, Xiao B, Neppl RL, et al. DOT1L regulates dystrophin expression and is critical for cardiac function. Genes Dev 2011;25:263-74. https://doi.org/10.1101/gad.2018511
- Duan Y, Wu X, Zhao Q, et al. DOT1L promotes angiogenesis through cooperative regulation of VEGFR2 with ETS-1. Oncotarget 2016;7:69674-87. https://doi.org/10.18632/oncotarget.11939
- Aslam MA, Alemdehy MF, Kwesi-Maliepaard EM, et al. Histone methyltransferase DOT1L controls state-specific identity during B cell differentiation. EMBO Rep 2021;22:e51184. https://doi.org/10.15252/embr.202051184
- Williams SP, Odell AF, Karnezis T, et al. Genome-wide functional analysis reveals central signaling regulators of lymphatic endothelial cell migration and remodeling. Sci Signal 2017;10:eaal2987. https://doi.org/10.1126/scisignal.aal2987
- Yoo H, Lee YJ, Park C, et al. Epigenetic priming by Dot1l in lymphatic endothelial progenitors ensures normal lymphatic development and function. Cell Death Dis 2020;11:14. https://doi.org/10.1038/s41419-019-2201-1
- Yoo H, La H, Park C, et al. Common and distinct functions of mouse Dot1l in the regulation of endothelial transcriptome. Front Cell Dev Biol 2023;11:1176115. https://doi.org/10.3389/fcell.2023.1176115
- Yoo H, Son D, Lee YJ, Hong K. Mouse JMJD4 is dispensable for embryogenesis. Mol Reprod Dev 2016;83:588-93. https://doi.org/10.1002/mrd.22654
- Park SO, Wankhede M, Lee YJ, et al. Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia. J Clin Invest 2009;119:3487-96. https://doi.org/10.1172/JCI39482
- He J, Shen L, Wan M, Taranova O, Wu H, Zhang Y. Kdm2b maintains murine embryonic stem cell status by recruiting PRC1 complex to CpG islands of developmental genes. Nat Cell Biol 2013;15:373-84. https://doi.org/10.1038/ncb2702
- Jones B, Su H, Bhat A, et al. The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure. PLoS Genet 2008;4:e1000190. https://doi.org/10.1371/journal.pgen.1000190
- Cardoso-Moreira M, Halbert J, Valloton D, et al. Gene expression across mammalian organ development. Nature 2019;571:505-9. https://doi.org/10.1038/s41586-019-1338-5
- Armingol E, Officer A, Harismendy O, Lewis NE. Deciphering cell-cell interactions and communication from gene expression. Nat Rev Genet 2021;22:71-88. https://doi.org/10.1038/s41576-020-00292-x
- Brivanlou AH, Darnell JE, Jr. Signal transduction and the control of gene expression. Science 2002;295:813-8. https://doi.org/10.1126/science.1066355
- Isbel L, Grand RS, Schubeler D. Generating specificity in genome regulation through transcription factor sensitivity to chromatin. Nat Rev Genet 2022;23:728-40. https://doi.org/10.1038/s41576-022-00512-6
- Chang CP, Bruneau BG. Epigenetics and cardiovascular development. Annu Rev Physiol 2012;74:41-68. https://doi.org/10.1146/annurev-physiol-020911-153242
- Gutierrez MEC, Hill MC, Largoza G, Martin JF, Wythe JD. Defining the transcriptional and epigenetic basis of organotypic endothelial diversity in the developing and adult mouse. bioRxiv 2021 Nov 16 [ePub]. https://doi.org/10.1101/2021.11.15.468651
- Cattaneo P, Kunderfranco P, Greco C, et al. DOT1L-mediated H3K79me2 modification critically regulates gene expression during cardiomyocyte differentiation. Cell Death Differ 2016;23:555-64. https://doi.org/10.1038/cdd.2014.199
- Cattaneo P, Hayes MGB, Baumgarten N, et al. DOT1L regulates chamber-specific transcriptional networks during cardiogenesis and mediates postnatal cell cycle withdrawal. Nat Commun 2022;13:7444. https://doi.org/10.1038/s41467-022-35070-2
- Wamstad JA, Alexander JM, Truty RM, et al. Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell 2012;151:206-20. https://doi.org/10.1016/j.cell.2012.07.035
- Park-Windhol C, D'Amore PA. Disorders of vascular permeability. Annu Rev Pathol 2016;11:251-81. https://doi.org/10.1146/annurev-pathol-012615-044506
- Claesson-Welsh L, Dejana E, McDonald DM. Permeability of the endothelial barrier: identifying and reconciling controversies. Trends Mol Med 2021;27:314-31. https://doi.org/10.1016/j.molmed.2020.11.006
- Komarova YA, Kruse K, Mehta D, Malik AB. Protein interactions at endothelial junctions and signaling mechanisms regulating endothelial permeability. Circ Res 2017;120:179-206. https://doi.org/10.1161/CIRCRESAHA.116.306534
- Delgado-Olguin P, Dang LT, He D, et al. Ezh2-mediated repression of a transcriptional pathway upstream of Mmp9 maintains integrity of the developing vasculature. Development 2014;141:4610-7. https://doi.org/10.1242/dev.112607
- Glaser SF, Heumuller AW, Tombor L, et al. The histone demethylase JMJD2B regulates endothelial-to-mesenchymal transition. Proc Natl Acad Sci USA 2020;117:4180-7. https://doi.org/10.1073/pnas.1913481117
- Choi JY, Yoon SS, Kim SE, Ahn Jo S. KDM4B histone demethylase and G9a regulate expression of vascular adhesion proteins in cerebral microvessels. Sci Rep 2017;7:45005. https://doi.org/10.1038/srep45005
- Weng X, Zhang Y, Li Z, et al. Class II transactivator (CIITA) mediates IFN-gamma induced eNOS repression by enlisting SUV39H1. Biochim Biophys Acta Gene Regul Mech 2019;1862:163-72. https://doi.org/10.1016/j.bbagrm.2019.01.005
- Heiss C, Rodriguez-Mateos A, Kelm M. Central role of eNOS in the maintenance of endothelial homeostasis. Antioxid Redox Signal 2015;22:1230-42. https://doi.org/10.1089/ars.2014.6158
- Tran N, Garcia T, Aniqa M, Ali S, Ally A, Nauli SM. Endothelial nitric oxide synthase (enos) and the cardiovascular system: in physiology and in disease states. Am J Biomed Sci Res 2022;15:155-79. https://doi.org/10.34297/AJBSR.2022.15.002087
- Lee K, Na W, Lee JY, et al. Molecular mechanism of Jmjd3-mediated interleukin-6 gene regulation in endothelial cells underlying spinal cord injury. J Neurochem 2012;122:272-82. https://doi.org/10.1111/j.1471-4159.2012.07786.x
- Yu S, Chen X, Xiu M, et al. The regulation of Jmjd3 upon the expression of NF-kappaB downstream inflammatory genes in LPS activated vascular endothelial cells. Biochem Biophys Res Commun 2017;485:62-8. https://doi.org/10.1016/j.bbrc.2017.02.020
- Morini MF, Giampietro C, Corada M, et al. VE-cadherin-mediated epigenetic regulation of endothelial gene expression. Circ Res 2018;122:231-45. https://doi.org/10.1161/CIRCRESAHA.117.312392