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DOT1-like histone lysine methyltransferase is critical for  
adult vessel maintenance and functions

HeeJi Lee1,a, Dong Wook Han2,a, Hyeonwoo La1, Chanhyeok Park1, Kiye Kang1, Ohbeom Kwon1,  
Sang Jun Uhm3, Hyuk Song1, Jeong Tae Do1, Youngsok Choi1, and Kwonho Hong1,*

Objective: Disruptor of telomeric silencing 1-like (DOT1L) is the only known histone 
H3K79 methyltransferase essential for the development of the embryonic cardiovascular 
system, including the heart, blood vessels, and lymphatic vessels, through transcriptional 
regulation. Our previous study demonstrated that Dot1l deletion results in aberrant lymphatic 
development and function. However, its precise function in the postnatal cardiovascular 
system remains unknown.
Methods: Using conditional and inducible Dot1l knockout (KO) mice, along with a reporter 
strain carrying the Geo gene at the Dot1l locus, DOT1L expression and its function in the 
vascular system during postnatal life were investigated. To assess vessel morphology and 
vascular permeability, we administered Latex or Evans blue dye to KO mice. In addition, in 
vitro tube formation and cell migration assays were performed using DOT1L-depleted 
human umbilical vein endothelial cells (HUVECs). Changes in the expression of vascular 
genes in HUVECs were measured by quantitative polymerase chain reaction.
Results: Our findings demonstrate that conditional Dot1l knockout in the Tg (Tie2-cre) 
strain results in abnormal blood vessel formation and lymphatic anomalies in the intestine. 
In a mouse model of Rosa26-creER-mediated inducible Dot1l knockout, we observed 
vascular phenotypes, including increased vascular permeability and brain hemorrhage, when 
DOT1L was deleted in adulthood. Additionally, DOT1L depletion in cultured HUVECs 
led to impaired cell migration and tube formation, likely due to altered gene transcription. 
These findings highlight the essential role of DOT1L in maintaining vascular integrity and 
function during embryonic development and postnatal life.
Conclusion: Our study revealed that DOT1L is required for the maintenance of adult vascular 
function through the regulation of gene expression.
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INTRODUCTION

The cardiovascular system is a complex network comprised of the heart, blood vessels, 
and lymphatic vessels. These components work together as the driving force behind blood 
circulation, ensuring the supply of nutrients and oxygen throughout the body while main-
taining the water balance [1-3]. Recent evidence indicates that blood and lymphatic vessels 
are regulated [4-6]. Notably, lymphangiogenesis studies have revealed that lymphatic endo-
thelial cells (LECs) are not solely derived from a subset of blood endothelial cells (BECs) 
in the cardinal vein (CV) as previously thought [7]. Instead, LECs originate from diverse 
types of (B)ECs, indicating a more complex origin model [8-13]. Recent studies have 
highlighted that LECs in the CV are embryologically derived from PAX3(+) cells origi-
nating from the lateral plate mesoderm (LPM) [14,15]. Migration of PAX3(+) cells to the 
CV is regulated by a centrifugal mechanism. However, specific molecular mechanisms 
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underlying this regulation remain unclear. Epigenetic mech-
anisms are crucial for ensuring proper functioning and 
maturation of endothelial cells during development and for 
maintaining the integrity of the cardiovascular system [16,17]. 
  Disruptor of telomeric silencing 1-like (DOT1L) was 
shown in previous studies performs critical functions during 
cardiovascular development. DOT1L plays vital roles in 
cardiac development and function [18-21]. Additionally, 
DOT1L is particularly important for the development and 
function of lymphatic vessels (LECs) [18,20,21], and DOT1L 
was identified as a key protein regulating LECs migration 
over blood endothelial cell (BECs) migration in a genome-wide 
gene knockdown study [22]. Our previous study demon-
strated that DOT1L plays an important role in the development 
and function of lymphatics in developing mouse embryos 
by modulating histone H3K79 methylation and transcrip-
tion [23]. Furthermore, DOT1L promoted BEC migration, 
tube formation, and sprout formation in vitro and in vivo, 
primarily by regulating VEGFR2 expression [20]. Remarkably, 
recent research has demonstrated that DOT1L has a different 
transcriptional regulatory network depending on the type 
of endothelial cell, whether LEC or BEC [24]. This indicates 
the complexity of DOT1L function and highlights its signifi-
cance in cardiovascular development and lymphangiogenesis.
  However, whether DOT1L is essential for the function (s) 
of BECs and/or LECs during adult life remains unclear. In 
the present study, we generated DOT1L knockout and re-
porter alleles and analyzed their expression patterns and 
vascular functions. Our analysis revealed that DOT1L is 
broadly expressed in various organs of adult mice, and its loss 
results in brain hemorrhage and increased vascular permea-
bility. Furthermore, DOT1L silencing in vitro led to impaired 
tube formation and migration, likely owing to aberrant tran-
scriptional regulation. 

MATERIALS AND METHODS

Mouse models and dye injection
All animal studies were reviewed and approved by Institute 
of Animal Care and Use Committee (IACUC) of Konkuk 
University (IACUC#KU18027). For conditional or inducible 
Dot1l KO studies, Dot1l2f/2f; Tie2-cre or Dot1l2f/2f; ROSA26-
creER mice were generated by breeding Tg (Tie2-cre) or 
ROSA26-creER strains with mice harboring the Dot1l con-
ditional allele (Dot1l2f/2f) [25]. Tg (Tie2-cre) (stock #004128) 
and ROSA26-creER (stock #004847) mice were purchased 
from the Jackson Laboratory. Some Dot1l2f/2f; Tie2-cre mice 
were viable beyond postnatal day (PD) 3. Latex dye was in-
jected into the left ventricle of the survived PD 5 mice as 
previously described [26]. Briefly, the mice were anesthetized, 
placed ventral side up, and the thoracic cavities were opened. 
The right atrium was excised. After systemic vessel perfusion 

with phosphate-buffered saline (PBS), blue latex dye (15 μL/g 
body weight; VWR International, Radnor, PA, USA) was 
slowly and gently injected into left ventricle. The gastrointes-
tinal tract was removed, fixed in 4% paraformaldehyde, and 
subjected to tissue clearing using an organic solvent (benzyl 
alcohol/benzyl benzoate, 1:1; Sigma-Aldrich, St. Louis, MO, 
USA). 
  4-Hydroxytamoxifen (HTM H6278, Sigma) was dissolved 
in DMSO (2 mg/25 g) and intraperitoneally injected into 7 to 
8 weeks-old Dot1l2f/2f; ROSA26-creER and control (Dot1l2f/2f) 
mice every other day for 2 weeks. One month after the last 
HTM injection, Evans Blue (EB) dye (1 mL of 3% [in 0.9% 
saline]/kg of mouse) was injected into the tail vein of Dot1l2f/2f; 
ROSA26-creER and control mice. Thirty minutes after EB 
injection, mice were anesthetized with isoflurane and per-
fused with 1% paraformaldehyde in 0.05M citrate buffer 
through the left ventricle. Approximately 4 cm of the small 
intestine was collected and placed between two pieces of 
Whatman filter paper for 10 seconds. and weighed. The tissues 
were then placed in 1 mL of formamide overnight at 56°C to 
extract EB. The following day, after removing the tissues, the 
amount of EB extracted was measured using a spectropho-
tometer (A620). Values were expressed as ng EB/mg of tissue.   

Cell culture and DOT1L knockdown 
Human umbilical vein endothelial cells (HUVEC; C-12200, 
PromoCell) were purchased and maintained in Endothelial 
Cell Basal Medium supplemented with supplements (C-
22215, C-39216, and PromoCell). To silence DOT1L in 
HUVEC, lenti-shDOT1L vectors were constructed, as de-
scribed in our previous study [27]. Briefly, hDOT1L KD1 
sequences (5’-GGCTCTGCGACAAGTACAA-3’ and 5’- 
TTGTACTTGTCGCAGAGCC-3’) and hDOT1L KD2 
sequences (5’- GCCCGCAAGAAGAAGCTAA and 5’- 
TTAGCTTCTTCTTGCGGGC-3’) were cloned into the 
BbsI/HindIII sites under the U6 promoter. To generate 
lentiviral viruses, HEK293T cells were grown in Dulbecco’s 
modified Eagle’s medium (DMEM) supplemented with 
10% fetal bovine serum and 1% penicillin/streptomycin. 
Once the cells reached ~85% confluency, the lenti-shDOT1L 
virus vector and packaging vectors (psPAX2 [Addgene # 
12260] and pMD2.G [Addgene # 12259] vectors) were trans
fected into HEK293T cells using the Superfect reagent (Qiagen, 
Germantown, MD, USA), and the HEK293T cells were 
maintained in Freestyle 293T media. Supernatants containing 
viral particles were harvested at 26, 38, and 50 h post-trans-
fection and concentrated using an Amicon Ultracell 100 K 
column (Amicon, MilliporeSigma, Burlington, MA, USA). 
After the production of the lenti-shDOT1L virus, HUVEC 
were transduced when the cells reached ~50% confluency 
by using polybrene (10 μg/mL). Transduced HUVECs were 
then subjected to puromycin (1 μg/mL) selection 48 h after 
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transduction for >7 days.

Analysis of cell migration and tube formation
For the tube formation assay, the HUVECs were counted 
and seeded into Matrigel-coated 48-well plates. Approximately 
5×103 cells were plated in each well. The plates were imaged 
12 h after seeding to assess tube formation. The number of 
tube branches originating from the center of each well was 
counted as a measure of angiogenic potential.
  For scratch wound closure analysis, approximately 2×105 
HUVECs were seeded in a 6-well plate. Once the cells reached 
approximately 95% confluence, scratches or wounds were 
created across the cell monolayer using a p200 pipette tip. 
After 17 h, the wound closure was imaged using a phase-
contrast microscope. The distance of wound closure was 
measured using the ImageJ software, which allowed quanti-
fication of the extent of cell migration and wound healing. 

X-gal and hematoxylin and eosin staining
X-gal staining was performed as describe in a previous 
study [25]. Briefly, internal organs from ~ 6wks-old mice 
were harvested, fixed for 10 min in PBS containing 1% 
formaldehyde, 0.2% glutaraldehyde, 2 mM MgCl2, 5 mM 
ethylene glycol tetraacetic acid (EGTA), and 0.02% NP-40, 
and stained at 37°C overnight with X-gal staining solution 
(5 mM K4Fe(CN)6, 5 mM K3Fe(CN)6·3H2O, 2 mM MgCl2, 
0.01% Na-deoxycholate, 0.02% NP-40, 100 mM phosphate 
buffer (pH 7.3), and 0.75 mg/mL X-gal). The stained organs 
were fixed with formalin and subjected to tissue clearance 
in an organic solution (benzyl benzoate:benzyl alcohol [1:1]).
  For hematoxylin and eosin (H&E) staining, tissues were 
dehydrated with differential concentration of ethanol series 
and xylene, embedded into paraffin, and cut with 6 μm-
thickness. Tissue sections were rehydrated with different 
concentrations of ethanol and H2O. They were then stained 
with eosin for the cytoplasm and hematoxylin for the nuclei, 
and mounted. Images were captured using an Olympus stereo 
microscope.

Reverse transcription quantitative polymerase chain 
reaction
Total RNAs was extracted using a RNeasy Plus Mini Kit 
(74104; Qiagen, USA), and cDNA was synthesized using 
Maxime RT PreMix cDNA synthesis kit (iNtRON; Seong-
nam, Korea). Quantitative polymerase chain reaction (qPCR) 
was performed on a StepOnePlus System (Applied Biosystems, 
Foster City, CA USA) using the Fast SYBR Green Master Mix 
(4385616; Applied Biosystems, USA). Primer sequences used 
in the qPCR analysis are presented (Table 1).

Statistical analysis
All statistical analyses were performed using Prism 8.0.2 

(GraphPad Software, San Diego, CA, USA). A t-test was 
used to determine the statistical significance in tube forma-
tion, cell migration, and qPCR assays. Mean values with the 
standard error of the mean (SEM) are presented as graph 
errors. Statistical significance was determined at a p-value 
lower than 0.05 (*), 0.01 (**), 0.001 (***) or NS (not signifi-
cant).

RESULTS

Dot1l expression during post-natal life
In this study, we first assessed Dot1l expression in adult organs 
using Dot1lGeo/+ mice, as previously described in another study 
[28]. Similar to the embryonic expression pattern, ubiquitous 
Dot1l expression in adult organs, including the heart, lungs, 
liver, sternum, and thymus, was detected using X-Gal staining 
(Figure 1). These results demonstrated that Dot1l is widely 
expressed in various organs during adulthood, mirroring its 
embryonic expression pattern.

Analysis of postnatal vessel phenotypes in Dot1l 
knockout mice
In our previous study [23], we demonstrated that most con-
ditional Dot1l knockout (cKO) mice using the Tg (Tie2-cre) 
strain exhibited late gestational embryonic lethality due to 
lymphatic anomalies such as blood-mixing, lymphatic hypo-
plasia, and chylous ascites. However, few cKO mice are 
viable after birth and display lymphatic phenotypes. Viable 
cKO mice were used to assay vessel phenotypes after birth. 
On approximately PD5, these mice were injected with latex 
dye into the left ventricle, which revealed a focal diffuse and 
nodular pattern of dye distribution around the hemorrhage-
like spots of the intestinal tubes. To further examine DOT1L 
function during adulthood, we employed inducible knockout 
(iKO) mice using the ROSA26-creER strain. As depicted in 
(Figure 2E, F) hemorrhagic spots were found in iKO brains 
and increased vascular permeability was observed in these 
mice.

Dot1l depletion impairs endothelial cells migration, 
tube formation, and expression of vascular genes 
To investigate Dot1l function in the regulation of vessel 
formation, in vitro tube formation and cell migration assays 
were performed. The results shown in (Figure 3A, C) indicate 
a significant reduction in the capacity for both tube formation 
and cell migration in DOT1L-depleted HUVECs. Next, we 
examined the gene expression patterns in DOT1L-depleted 
HUVECs. As shown in (Figure 3E), a subset of the genes 
examined, including PROX1, SOX18, NR2F2, VEGFR3, 
VEGFC, NRP2, TBX1, CALCRL, SYK, PDPN, RAC1, PPP1R13B, 
PLCG2, C1GALT1, DLL4, EFNB2 and DOT1L were repressed 
in KD HUVECs. 
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DISCUSSION

During embryonic development, precise control of gene ex-
pression is essential for the formation of various tissues and 
organs [29,30]. Various signaling pathways and transcription 
factors regulate the expression of specific genes at different 
stages of development [31,32]. Epigenetic modifications, such 
as histone methylation, play a key role in this process by regu-
lating chromatin structure and accessibility, thereby influencing 
gene expression during cardiovascular development and 
function [16,33,34]. The present study examined DOT1L 
function in adult mice and found that DOT1L loss induced 
cerebrovascular hemorrhage and increased vascular perme-
ability. In addition, in vitro experiments showed that deletion 

of DOT1L impaired tube formation and migration in HUVECs. 
Furthermore, they found that this was due to the transcrip-
tional regulation by DOT1L. As expected, Dot1l was widely 
expressed in the cells of various organs, and this expression 
pattern was likely associated with essential DOT1L functions.
  Previous studies have shown that DOT1L is essential for 
cardiac development and function [19,35,36]. DOT1L regu-
lates the expression of crucial genes that control cardiomyocyte 
proliferation, differentiation, and cardiac morphogenesis. 
Studies in mice have shown that DOT1L is necessary for 
proper heart formation, and its deficiency leads to severe 
cardiac defects, including thinning of the ventricular walls, 
improper chamber formation, and abnormal cardiac func-
tion [37]. DOT1L loss in cardiomyocytes leads to dilated 

Table 1. Primer and knockdown (KD) sequences used in this study

Genes Primer sequence (5'-3') Accession No. Size (bp)

hPROX1 F  TGAATCCCCAAGGTTCTGAG NM_002763 108
R  CATACGAGTTCGCCCTCTTC

hSOX18 F  AGCGTGGAAGGAGCTGAAC NM_018419 105
R  GGCCGGTACTTGTAGTTGG

hNR2F2 F  CGGATCTTCCAAGAGCAAGT NM_021005 100
R  AGGCATCTGAGGTGAACAGG

hVEGFR3 F  GTACATGCCAACGACACAGG NM_002020 97
R  TCACGAACACGTAGGAGCTG

hVEGFC F  GTCGCGACAAACACCTTCTT NM_005429 105
R  GTAGCTCGTGCTGGTGTTCA

hNRP2 F  GAAGAGGAGGCCACAGAGTG NM_201266 99
R  CTCGAGGAAATCGAAGTTGC

hTBX1 F  GTTTCCCACCTTCCAAGTGA NM_080647 99
R  TACCGGTAGCGCTTATCGTC

hCALCRL F  GCAGCTCTGCCCTGATTACT NM_005795 103
R  TCTGTTGCTTGCTGGATGTC

hSYK F  AAGCAAATGTCATGCAGCAG NM_003177 103
R  CCAAGTTCTGCCATCTCCAT

hPDPN F  ATTTTCCCCCAGCTCAGAAT NM_006474 101
R  CTTCCCAAAACGAAGAGCAG

hRAC1 F  AACCAATGCATTTCCTGGAG NM_006908 99
R  TCCCATAAGCCCAGATTCAC

hPPP1R13B F  CGTTTTACCTTCGGGTTCAA NM_015316 96
R  CTTTCTGAAGGTGGCTGAGG

hPLCG2 F  TGACAAGATCGAGGGCTTCT NM_002661 102
R  TCTTTCTGGCGAACTGCTTT

hC1GALT1 F  ATCCCTTTGTGCCAGAACAC NM_020156 103
R  CAGCAACCAGGACCCTCTAC

hDLL4 F  TGCAGGAGTTCATCAACGAG NM_019074 96
R  GGAAGTGCTTAAGGCAGACG

hEFNB2 F  TTCCGAAGTGGCCTTATTTG NM_004093 95
R  TCCGGTACTTCAGCAAGAGG

hDOT1L F  CACATTGGAGAGAGGCGATT NM_032482 104
R  GATCCACCTCAGGACCAAAG

PROX1, prospero homeobox 1; SOX18, SRY-box transcription factor 18; NR2F, nuclear receptor subfamily 2 group F member 2; VEGFR3, vascular endothelial 
growth factor receptor 3; VEGFC, vascular endothelial growth factor C; NRP2, neuropilin 2; TBX1, T-box transcription factor 1; CALCRL, calcitonin receptor 
like receptor; SYK, spleen associated tyrosine kinase; PDPN, podoplanin; RAC1, Rac family small GTPase 1; PPP1R13B, protein phosphatase 1 regulatory 
subunit 13B; PLCG2, phospholipase C gamma 2; C1GALT1, core 1 synthase, glycoprotein-N-acetylgalactosamine 3-beta-galactosyltransferase 1; DLL4, del-
ta like canonical Notch ligand 4; EFNB2, ephrin B2; DOT1L, DOT1-like histone lysine methyltransferase.
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cardiomyopathy due to the aberrant expression of genes es-
sential for heart function [19]. In addition, Cattaneo et al 
[36] showed that DOT1L specifically regulates gene sets 
critical for left ventricle formation and postnatal cell cycle 
withdrawal in cardiomyocytes via H3K79 methylation.
  Our analysis revealed that DOT1L loss in adults leads to 
increased vascular permeability and eventual cerebrovascular 
bleeding. Proper regulation of vascular permeability is crucial 
for tissue homeostasis and immune responses, and dysregu-
lation can lead to pathological conditions such as edema and 
inflammation [38-40]. Similarly, histone methylation plays a 
critical role in regulating vascular integrity, which is essential 
for maintaining the barrier function of blood vessels and 
preventing vascular leakage and inflammation. Epigenetic 
modification of histones, particularly methylation, can affect 

the expression of genes involved in endothelial cell adhesion, 
junctional complexes, and cytoskeletal organization, thereby 
influencing the overall vascular integrity [41-43]. For example, 
histone methyltransferase Suv39h1 repress eNOS transcrip-
tion via binding to its proximal promoter, in which reduced 
H3K9me3 level induces IFN-γ-induced eNOS repression 
[44]. In general, eNOS is critical for the regulation of endo-
thelial function and vascular tone [45,46]. Jmjd3, a histone 
H3K27me3 demethylase, expression is upregulated upon 
oxygen-glucose deprivation/reperfusion injury in endotheli-
al cells, in which the elevation of Jmjd3 leads to increase its 
interactions with Nf-κb (p65/p50) and CCAAT-enhancer-
binding protein β in interleukin 6 (Il-6) gene promoter, and 
then decrease H3K27me3 levels to promote Il-6 expression 
[47]. In addition, Jmjd3 expression is enhanced in endothelial 
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Figure 1. Detection of mouse Dot1l expression in postnatal mouse organs using Dot1lGeo/+ allele. A. X-Gal staining showing expression pattern of 
Dot1l in heart, lungs, liver, sternum and thymus. Arrow head: blood vessels. A, artery. V, vein. CCA, common carotid artery. Ao, aorta. PT, pulmonary 
trunk. Scale bar = 200 μm.
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cells after lipopolysaccharide treatment to activate target gene 
expression via demethylation of H3K27me3 [48]. Overexpres-
sion of vascular endothelial cadherins increases claudin-5 
expression by preventing the binding of PRC2 to the CLDN5 
gene [49]. Recently, it was shown that common and/or diverse 
gene signatures and epigenetic landscapes exist across organo-
typic BECs in mice [34].
  Consistent with our analysis, silencing DOT1L in HUVECs 

leads to cell death and reduced capillary sprout formation, 
which are associated with altered H3K79 methylation and 
transcription factor ETS-1 binding, resulting in the regulation 
of VEGFR2 expression [20]. Our previous study revealed 
that DOT1L regulates distinct sets of transcripts in different 
types of endothelial cells, likely through H3K79 methylation 
[24]. One of these gene sets included cell-cell adhesion mol-
ecules (CLDN1, CLDN11, and PCDHs), which were found 

Figure 2. Phenotypic analysis of Dot1l knockout (KO) strains. (A) Visualization of latex dye-injected Dot1l cKO intestine. Note that a diffused vessel 
structure was detected in the Dot1l cKO intestine. (B) Representative images of Evans blue dye leakages in face, dorsal skin and intestine. (C) 
Representative images of Evans blue dye-injected intestines. (D) Quantification of leaked Evans blue dye extracted from intestine. Graphs represent 
the mean and standard error mean. ***, p<0.001. (E) Representative photographs of hemorrhage-like spots in the inducible Dot1l KO brain. Arrow 
head: hemorrhagic spot(s). (F) Hematoxylin and eosin (H&E) staining in the inducible Dot1l KO brain. Arrow head: hemorrhage. Scale bar = 200 μm.

20 

 

 448 

 449 

Figure 2. 450 



www.animbiosci.org  1641

Lee et al (2024) Anim Biosci 37:1635-1643

to be differentially expressed by DOT1L depletion or over-
expression. Consequently, it is plausible that the cerebrovascular 
hemorrhage observed in the induced DOT1L KO mice was 
due to the repressed expression of these cell-cell adhesion 
molecules.
  Our study, along with others, showed that DOT1L plays a 
crucial role in maintaining vessel integrity in adults through 

transcriptional regulation. Cerebrovascular hemorrhage ob-
served in DOT1L KO mouse could potentially open new 
avenues for utilizing DOT1L in the treatment of cerebral 
hemorrhage. However, further research is required to explore 
this issue in more detail and gain a deeper understanding of 
the therapeutic potential of DOT1L in the treatment of cere-
bral hemorrhage.

Figure 3. Analysis of cellular effects of DOT1L silencing in HUVECs. (A) Assay of in vitro tube formation in DOT1L-knock down HUVECs, and quantifi-
cation (B). (C) Assay of cell migration in the DOT1L-knock down HUVECs, and quantification (D). Graphs in (B) and (D) represent the mean and standard 
error mean. * p<0.05. *** p<0.001. (E) qPCR analysis of vascular gene expression in the DOT1L-knock down HUVECs. Scale bar = 200 μm. HUVECs, 
human umbilical vein endothelial cells; RT-qPCR, reverse transcription quantitative polymerase chain reaction.
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