DOI QR코드

DOI QR Code

Image analysis traits of multiple muscles and intermuscular/subcutaneous fat influence Japanese Black beef carcass price and genetic parameters

  • Yuta Tamagawa (Obihiro University of Agriculture and Veterinary Medicine) ;
  • Mikiya Takahashi (Obihiro University of Agriculture and Veterinary Medicine) ;
  • Koichi Hagiya (Obihiro University of Agriculture and Veterinary Medicine) ;
  • Keigo Kuchida (Obihiro University of Agriculture and Veterinary Medicine)
  • Received : 2023.08.30
  • Accepted : 2023.11.10
  • Published : 2024.09.01

Abstract

Objective: The purposes of this study were to investigate the relationship between carcass unit price per 1 kg (UP) and multiple muscles and intermuscular fat (IF)/subcutaneous fat of beef carcasses using image analysis of cross-section images for Wagyu beef cattle in Japan, and to estimate their genetic parameters. Methods: The carcasses used in this study were 1,807 Japanese Black (Wagyu) cattle (1,216 steers and 591 heifers). An analysis of variance was conducted with UP as the dependent variable and market date, age in months, sex, and image analysis traits (IAT) as fixed effects, and standard partial regression coefficients were calculated for each IAT on UP. Also, the heritability of each IAT that affected UP and genetic correlation among IAT vs carcass grading traits were estimated. Results: Not only IAT related to carcass grading traits, M. trapezius dorsi, M. latissimus dorsi, and IF traits were significant differences in UP (p<0.05). The heritability of IAT associated with UP was estimated at 0.38 to 0.85. The genetic correlations between the area and thickness of M. trapezius dorsi and M. latissimus dorsi vs rib eye area (REA) were estimated to be moderately positive (0.53 to 0.66), while the genetic correlations between the IF area percentage vs carcass weight, REA, and yield score were estimated to be negative (-0.40, -0.56, and -0.34). Conclusion: UP was influenced by various traits, including M. trapezius dorsi, M. latissimus dorsi, and IF traits, as well as image analysis associated with carcass grading traits. Since these IAT associated with UP had hereditary and desirable genetic correlations with carcass grading traits, these traits were also important for genetic improvement.

Keywords

Acknowledgement

The authors gratefully acknowledge the Hokuren Federation of Agricultural Cooperatives, Tokachi Federation of Agricultural Cooperatives, and Hokkaido Livestock Industry Association for providing the data.

References

  1. Yamaki H, Hasegawa T, Ito H, Ugiie T. Beef carcass grading pricing factors for buyers. Collected papers of Japan Economic Review 1996;175-9.
  2. Hirooka H, Matsumoto M. Factors involved in price determination in the Japanese beef carcass market. Agric Econ Res 1998;69:229-35. https://doi.org/10.11472/nokei.69.229
  3. Kim J, Kim D, Lee J, Lee C. Genetic relationship between carcass traits and carcass price of Korean cattle. Asian-Australas J Anim Sci 2010;23:848-54. https://doi.org/10.5713/ajas.2010.90555
  4. Iwasaki R, Sakoda K, Asa R, Goto T, Hagiya K, Kuchida K. Evaluation of overall sire bulls using image analysis traits in the Japanese Black cattle. Nihon Chikusan Gakkaiho (Anim Sci J?) 2017;122:105. (Abstr.)
  5. Hokkaido Dairy and Livestock Association. Hokuren Tokachi carcass market results from each standard [Internet]. Sapporo, Japan: Hokkaido Livestock Industry Association; c2013 [cited 2023 Aug 8]. Available from: https://rakutiku.or.jp/shijo/
  6. Garrett WN, Hinman N. Fat content of trimmed beef muscles as influenced by quality grade, yield grade, marbling score and sex. J Anim Sci 1971;33:948-57. https://doi.org/10.2527/jas1971.335948x
  7. Brackebusch SA, Mckeith FK, Carr TR, Mclaren DG. Relationship between longissimus composition and the composition of other major muscles of the beef carcass. J Anim Sci 1991;69:631-40. https://doi.org/10.2527/1991.692631x
  8. Kuchida K, Suzuki M, Miyoshi S. Evaluation of coarseness of marbling in the beef rib eye by computer image analysis. Anim Sci J 2001;72:224-31. https://doi.org/10.2508/chikusan.72.8_224
  9. Kuchida K, Kikuchi A, Kato K, Hidaka S, Suzuki M, Miyoshi S. Evaluation method for the shape of M. longissimus thoracis by computer image analysis and effect of sire on the shape in Japanese Black. Anim Sci J 2003;74:23-9. https://doi.org/10.2508/chikusan.74.23
  10. Takeo A, Asa R, Hagiya K, Kuchida K. Effect of marbling shape on unit price in the M. longissimus dorsi of Japanese Black and crossbred breeds. Anim Sci J 2016;87:253-7. https://doi.org/10.2508/chikusan.87.253
  11. Nade T, Karnuah AB, Masuda Y, Hirabara S, Fujita K. Estimation of carcass composition from the cross-section at ribloin of Japanese Black steers by computer image analysis. Anim Sci J 2001;72:313-20. https://doi.org/10.2508/chikusan.72.9_313
  12. Kuchida K, Kanai T, inventors. Methods for evaluating marbling of meat [2012 Sep 28]. Obihiro University of Agriculture and Veterinary Medicine, Japan Meat Grading Association, assignee. Japanese patent JP 2012217934.
  13. Nomura N, Kuchida K. Effects of monounsaturated fatty acid compositions of intermuscular fat on carcass price of Japanese Black cattle. Anim Sci J 2022;93:323-30. https://doi.org/10.2508/chikusan.93.323
  14. Misztal I, Tsuruta S, Strabel T, Auvray B, Druet T, Lee DH. BLUPF90 and related programs (BGF90). In: Proceedings of the 7th world congress on genetics applied to livestock production 2002; 2022 Aug 19-23: Montpellier, France.
  15. Osawa T, Kuchida K, Kato T, Suzuki M, Miyoshi S. Estimation of genetic parameters for image analysis traits of carcass crosssection and carcass traits in Japanese Black cattle. Anim Sci J 2004;75:11-6. https://doi.org/10.2508/chikusan.75.11
  16. Mueller LF, Balieiro JCC, Ferrinho AM, et al. Gender status effect on carcass and meat quality traits of feedlot Angus×Nellore cattle. Anim Sci J 2019;90:1078-89. https://doi.org/10.1111/asj.13250
  17. Sobczuk-Szul M, Mochol M, Nogalski Z, Pogorzelska-Przybylek P. Fatty acid profile as affected by fat depot and the sex category of Polish Holstein-Friesian×Limousin fattening cattle fed silage ad libitum. Anim Sci J 2021;92:e13516. https://doi.org/10.1111/asj.13516
  18. Ibi T, Kahi AK, Hirooka H. Effect of carcass price fluctuations on genetic and economic evaluation of carcass grading traits in Japanese Black cattle. J Anim Sci 2006;84:3204-11. https://doi.org/10.2527/jas.2005-610
  19. Gallo L, Sturaro E, Bittante G. Body traits, carcass characteristics and price of cull cows as affected by farm type, breed, age and calving to culling interval. Animal 2017;11:696-704. https://doi.org/10.1017/S1751731116001592
  20. Alam M, Cho KH, Lee SS, et al. Effect of carcass traits on carcass prices of Holstein steers in Korea. Asian-Australas J Anim Sci 2013;26:1388-98. https://doi.org/10.5713/ajas.2013.13109
  21. Sakoda K, Maeda S, Asa R, Hagiya K, Kuchida K. Effects of "Dice fat" area on carcass grading traits, image analysis traits, and UP in Japanese Black cattle. Anim Sci J 2016;87:247-51. https://doi.org/10.2508/chikusan.87.247
  22. Osawa T, Kuchida K, Hidaka S, Kato T. Genetic parameters for image analysis traits on M. longissimus thoracis and M. trapezius of carcass cross section in Japanese Black steers. J Anim Sci 2008;86:40-6. https://doi.org/10.2527/jas.2007-0359
  23. Osawa T, Hasegawa M, Kuchida K, Hidaka S, Sekikawa M, Tsukuda H. Estimation of genetic parameters for muscle area, subcutaneous fat of carcass cross-section in Japanese Black cattle. Anim Sci J 2004; 75:521-6. https://doi.org/10.2508/chikusan.75.521
  24. Naserkheil M, Lee DH, Kong HS, Seong J, Mehrban H. Estimation of genetic parameters and correlation between yearling ultrasound measurements and carcass traits in Hanwoo cattle. Animals 2021;11:1425. https://doi.org/10.3390/ani11051425
  25. Riley DG, Chase CCJ, Hammond AC, et al. Estimated genetic parameters for carcass traits of Brahman cattle. J Anim Sci 2002;80:955-62. https://doi.org/10.2527/2002.804955x
  26. Kato K, Maeda S, Kuchida K. Genetic parameters for fineness of marbling in M. longissimus thoracis of Japanese Black cattle. Anim Sci J 2014;85:21-6. https://doi.org/10.2508/chikusan.85.21
  27. Anderson F, Cook J, Williams A, Gardner GE. Computed tomography has improved precision for prediction of intramuscular fat percent in the M. longissimus thoracis et lumborum in cattle compared to manual grading. Meat Sci 2018;145:425-30. https://doi.org/10.1016/j.meatsci.2018.07.025
  28. Mendizabal JA, Ripoll G, Urrutia O, Insausti K, Soret B, Arana A. Predicting beef carcass fatness using an image analysis system. Animals 2021;11:2897. https://doi.org/10.3390/ani11102897