DOI QR코드

DOI QR Code

Association of histamine-N-methyl transferase gene polymorphisms with carnosine content in red-brown Korean native chickens

  • Jean Pierre Munyaneza (Division of Animal and Dairy Science, Chungnam National University) ;
  • Minjun Kim (Division of Animal and Dairy Science, Chungnam National University) ;
  • Eunjin Cho (Department of Bio-AI Convergence, Chungnam National University) ;
  • Aera Jang (Department of Applied Animal Science, College of Animal Life Science, Kangwon National University) ;
  • Hyo Jun Choo (Poultry Research Institute, National Institute of Animal Science) ;
  • Jun Heon Lee (Division of Animal and Dairy Science, Chungnam National University)
  • Received : 2023.12.29
  • Accepted : 2024.03.14
  • Published : 2024.09.01

Abstract

Objective: Carnosine and anserine affect the meat flavor. The contents of carnosine and anserine in meat are affected by genetic and environmental factors. This study aimed to discover the single-nucleotide polymorphisms (SNPs) in the histamine-N-methyl transferase (HNMT) and histamine-N-methyl transferase-like (HNMT-like) genes and to associate them with the content of carnosine and anserine in Korean native chicken-red brown line (KNC-R). Methods: This study used a total of 384 birds (males, n = 192; females, n = 192) aged 10 weeks old, for genotyping HNMT and HNMT-like genes. One synonymous SNP (rs29009298C/T) of the HNMT gene was genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methods whereas four missense SNPs (rs734406537G/A; rs736514667A/G; rs15881680G/A and rs316765035T/C) of the HNMT gene, and one missense SNP rs737657949A/C of the HNMT-like gene were genotyped by PCR allele competitive extension (PACE) genotyping technology. Two-way analysis of variance of the R program was used to associate HNMT genotypes with the contents of carnosine and anserine in KNC-R chickens. Results: There were significant associations (p<0.05) between the genotypes of the synonymous SNP:rs29009298C/T, missense SNP rs736514667A/G of the HNMT gene and the content of carnosine in KNC-Rs. This study also reported the sex effect on the carnosine content, where females had more content of carnosine compared to that of male KNC-R. Conclusion: Two SNPs (synonymous: rs735769522C/T) and missense: rs736514667A/G) in the HNMT gene might be used as genetic markers in the selection and breeding of chickens with better taste and high-flavored meat.

Keywords

Acknowledgement

This study was financially supported by the project funding number: RS-2021-RD010125 (PJ016205) of the Rural Development Administration, South Korea.

References

  1. Petracci M, Cavani C. Muscle growth and poultry meat quality issues. Nutrients 2012;4:1-12. https://doi.org/10.3390/nu4010001
  2. Jung S, Bae YS, Kim HJ, et al. Carnosine, anserine, creatine, and inosine-5'-monophosphate contents in breast and thigh meats from 5 lines of Korean native chicken. Poult Sci 2013;92:3275-82. https://doi.org/10.3382/ps.2013-03441
  3. Cahyadi M, Park HB, Seo DW, et al. Association of the thyroid hormone responsive spot 14 alpha gene with growth-related traits in Korean native chicken. Asian-Australas J Anim Sci 2020;33:1755-62. https://doi.org/10.5713/ajas.19.0541
  4. Kim M, Munyaneza JP, Cho E, et al. Genome-wide association study on the content of nucleotide-related compounds in Korean native chicken breast meat. Animals 2023;13:2966. https://doi.org/10.3390/ani13182966
  5. Maltin C, Balcerzak D, Tilley R, Delday M. Determinants of meat quality: tenderness. Proc Nutr Soc 2003;62:337-47. https://doi.org/10.1079/PNS2003248
  6. Khan MI, Jo C, Tariq MR. Meat flavor precursors and factors influencing flavor precursors-a systematic review. Meat Sci 2015;110:278-84. https://doi.org/10.1016/j.meatsci.2015.08.002
  7. Ismail I, Joo ST. Poultry meat quality in relation to muscle growth and muscle fiber characteristics. Korean J Food Sci Anim Resour 2017;37:873-83. https://doi.org/10.5851/kosfa.2017.37.6.873
  8. Munyaneza JP, Kim M, Cho E, Jang A, Choo HJ, Lee JH. Association of single-nucleotide polymorphisms in dual specificity phosphatase 8 and insulin-like growth factor 2 genes with inosine-5'-monophosphate, inosine, and hypoxanthine contents in chickens. Anim Biosci 2023;36:1357-66. https://doi.org/10.5713/ab.23.0080
  9. Sasaki K, Motoyama M, Mitsumoto M. Changes in the amounts of water-soluble umami-related substances in porcine longissimus and biceps femoris muscles during moist heat cooking. Meat Sci 2007;77:167-72. https://doi.org/10.1016/j.meatsci.2007.02.025
  10. Jayasena DD, Ahn DU, Nam KC, Jo C. Factors affecting cooked chicken meat flavor: a review. Worlds Poult Sci J 2013;69:515-26. https://doi.org/10.1017/S0043933913000548
  11. Jayasena DD, Kim SH, Lee HJ, et al. Comparison of the amounts of taste-related compounds in raw and cooked meats from broilers and Korean native chickens. Poult Sci 2014;93:3163-70. https://doi.org/10.3382/ps.2014-04241
  12. Hu J, Yu P, Ding X, Xu M, Guo B, Xu Y. Genetic polymorphisms of the AMPD1 gene and their correlations with IMP contents in Fast Partridge and Lingshan chickens. Gene 2015;574:204-9. https://doi.org/10.1016/j.gene.2015.08.008
  13. Uemoto Y, Ohtake T, Sasago N, et al. Effect of two nonsynonymous ecto-5'-nucleotidase variants on the genetic architecture of inosine 5'-monophosphate (IMP) and its degradation products in Japanese Black beef. BMC Genomics 2017;18:874. https://doi.org/10.1186/s12864-017-4275-4
  14. Jin S, Park HB, Seo D, et al. Identification of quantitative trait loci for the fatty acid composition in Korean native chicken. Asian-Australas J Anim Sci 2018;31:1134-40. https://doi.org/10.5713/ajas.17.0781
  15. Shahidi F, Hossain A. Role of lipids in food flavor generation. Molecules 2022;27:5014. https://doi.org/10.3390/molecules27155014
  16. Chumngoen W, Tan FJ. Relationships between descriptive sensory attributes and physicochemical analysis of broiler and Taiwan native chicken breast meat. Asian-Australas J Anim Sci 2015;28:1028-37. https://doi.org/10.5713/ajas.14.0275
  17. Ma T, Xu L, Wang H, et al. Mining the key regulatory genes of chicken inosine 5'-monophosphate metabolism based on time series microarray data. J Anim Sci Biotechnol 2015;6:21. https://doi.org/10.1186/s40104-015-0022-3
  18. Boldyrev AA, Aldini G, Derave W. Physiology and pathophysiology of carnosine. Physiol Rev 2013;93:1803-45. https://doi.org/10.1152/physrev.00039.2012
  19. Forsberg EA, Botusan IR, Wang J, et al. Carnosine decreases IGFBP1 production in db/db mice through suppression of HIF-1. J Endocrinol 2015;225:159-67. https://doi.org/10.1530/JOE-14-0571
  20. Blancquaert L, Baba SP, Kwiatkowski S, et al. Carnosine and anserine homeostasis in skeletal muscle and heart is controlled by β-alanine transamination. J Physiol 2016;594:4849-63. https://doi.org/10.1113/JP272050
  21. Wu G. Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health. Amino Acids 2020;52:329-60. https://doi.org/10.1007/s00726-020-02823-6
  22. Teeravirote K, Sutthanut K, Thonsri U, et al. Anserine/Carnosine-rich extract from Thai native chicken suppresses melanogenesis via activation of ERK signaling pathway. Molecules 2022;27:7440. https://doi.org/10.3390/molecules27217440
  23. D'Astous-Page J, Gariepy C, Blouin R, et al. Identification of single nucleotide polymorphisms in carnosine-related genes and effects of genotypes on pork meat quality attributes. Meat Sci 2017;134:54-60. https://doi.org/10.1016/j.meatsci.2017.07.019
  24. Ma XY, Jiang ZY, Lin YC, Zheng CT, Zhou GL. Dietary supplementation with carnosine improves antioxidant capacity and meat quality of finishing pigs. J Anim Physiol Anim Nutr (Berl) 2010;94:e286-95. https://doi.org/10.1111/j.1439-0396.2010.01009.x
  25. Dashdorj D, Amna T, Hwang I. Influence of specific taste active components on meat flavor as affected by intrinsic and extrinsic factors: an overview. Eur Food Res Technol 2015;241:157-71. https://doi.org/10.1007/s00217-015-2449-3
  26. Zhang L, Hao Z, Zhao C, et al. Taste compounds, affecting factors, and methods used to evaluate chicken soup: a review. Food Sci Nutr 2021;9:5833-53. https://doi.org/10.1002/fsn3.2501
  27. Kim M, Munyaneza JP, Cho E, et al. Genome-wide association studies of anserine and carnosine contents in the breast meat of Korean native chickens. Poult Sci 2024;103:103590. https://doi.org/10.1016/j.psj.2024.103590
  28. Drozak J, Chrobok L, Poleszak O, Jagielski AK, Derlacz R. Molecular identification of carnosine N-methyltransferase as chicken histamine N-methyltransferase-like protein (hnmtlike). PLoS One 2013;8:e64805. https://doi.org/10.1371/journal.pone.0064805
  29. Kwiatkowski S, Kiersztan A, Drozak J. Biosynthesis of carnosine and related dipeptides in vertebrates. Curr Protein Pept Sci 2018;19:771-89. https://doi.org/10.2174/1389203719666180226155657
  30. Andersen SM, Waagbo R, Espe M. Functional amino acids in fish health and welfare. Front Biosci (Elite Ed). 2016;8:143-69. https://doi.org/10.2741/757
  31. Kim HC, Ko YJ, Jo C. Potential of 2D qNMR spectroscopy for distinguishing chicken breeds based on the metabolic differences. Food Chem 2021;342:128316. https://doi.org/10.1016/j.foodchem.2020.128316
  32. Nei M, Kumar S. Molecular evolution and phylogenetics. New York, USA: Oxford University Press; 2000. pp. 231-5
  33. Hartl DL, Clark AG. Principle of population genetics. 4th ed. Sunderland, MA, USA: Sinauer Associates; 1997. p. 81.
  34. R Core Team, R: a language and environment for statistical computing [Internet]. Vienna, Austria: R foundation for statistical computing; 2022 [cited 2023 Nov 20]. Available from: https://www.R-project.org/
  35. Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting damaging missense mutations. Nat Methods 2010;7:248-9. https://doi.org/10.1038/nmeth0410-248
  36. Dai YJ, Wu DC, Feng B, et al. Protective effect of carnosine on febrile seizures in immature mice. Neurosci Lett 2015;588:95-100. https://doi.org/10.1016/j.neulet.2014.12.061
  37. Huang H, Li Y, Liang J, Finkelman FD. Molecular regulation of histamine synthesis. Front Immunol 2018;9:1392. https://doi.org/10.3389/fimmu.2018.01392
  38. Wojcik W, Lukasiewicz-Mierzejewska M, Damaziak K, Bien D. Biogenic amines in poultry meat and poultry products: formation, appearance, and methods of reduction. Animals 2022;12:1577. https://doi.org/10.3390/ani12121577
  39. Michalski M, Pawul-Gruba M, Madejska A. Histamine contents in raw long-ripening meat products commercially available in Poland. J Vet Res 2021;65:477-81. https://doi.org/10.2478/jvetres-2021-0062
  40. Maintz L, Novak N. Histamine and histamine intolerance. Am J Clin Nutr 2007;85:1185-96. https://doi.org/10.1093/ajcn/85.5.1185
  41. Neumann J, Grobe JM, Weisgut J, et al. Histamine can be formed and degraded in the human and mouse heart. Front Pharmacol 2021;12:582916. https://doi.org/10.3389/fphar.2021.582916
  42. Allendorf FW, Luikart G, Aitken SN. Conservation and genetics of populations. 2nd ed. Hoboken, NJ, USA: John Wiley and Sons; 2013. pp. 118-32.
  43. Suwanvichanee C, Sinpru P, Promkhun K, et al. Effects of b-alanine and L-histidine supplementation on carnosine contents in and quality and secondary structure of proteins in slow-growing Korat chicken meat. Poult Sci 2022;101:101776. https://doi.org/10.1016/j.psj.2022.101776