DOI QR코드

DOI QR Code

Performance evaluation of precast frames using CSM-based fragility analysis

  • Anand S. Ingle (National Center for Disaster Mitigation and Management, Malaviya National Institute of Technology) ;
  • Shiv D. Bharti (National Center for Disaster Mitigation and Management, Malaviya National Institute of Technology) ;
  • Mahendra K. Shrimali (National Center for Disaster Mitigation and Management, Malaviya National Institute of Technology) ;
  • Tushar K. Datta (National Center for Disaster Mitigation and Management, Malaviya National Institute of Technology)
  • Received : 2024.01.30
  • Accepted : 2024.08.13
  • Published : 2024.11.25

Abstract

Seismic performance evaluation of precast building frames is of great importance because precast buildings have failed during earthquakes in the past. The present work evaluates the seismic performance of a 10-story precast building frame using pushover analysis (POA). Three types of precast connections are incorporated in the study, and the corresponding monolithic connections in the frame are utilized to evaluate the relative performances of the precast frames. A pushover analysis is performed for frames with each type of connection, and three performance points (PP) are identified: one in the elastic range, the second in the elastoplastic range, and the third in the near collapse state. The PP is obtained using the average response spectrum of an ensemble of seven earthquake records belonging to three types of earthquakes: a far field, a near field with a directivity effect, and a near field with a fling step effect. At the PP, responses obtained from POA are compared with the average responses of the nonlinear time history analysis (NLTHA). The response quantities of interest include maximum base shear, maximum top displacement, and maximum inter-story drift ratio (MIDR). Additionally, performance evaluation includes the study of the characteristics of the fragility curves corresponding to four defined damage states similar to those defined by HAZUS for nonlinear static analysis. The fragility curves are developed based on peak ground acceleration (PGA). The results of the study indicate that depending on the performance points, a maximum of 30% difference in responses between POA and NLTHA is observed. Furthermore, the nature of the fragility curves of the precast and monolithic frame could be different in the higher damage state; however, the same may not be significant for the lower damage state.

Keywords

References

  1. Akkose, M., Sunca, F. and Turkay, A. (2018), "Pushover analysis of prefabricated structures with various partially fixity rates", Earthq. Struct., 14(1), 21-32. https://doi.org/10.12989/eas.2018.14.1.021.
  2. ATC-40 (1996), Seismic Evaluation and Retrofit of Concrete buildings, Applied Technology Council, Redwood City, CA, USA.
  3. Barbat, A.H., Pujades, L.G. and Lantada, N. (2008), "Seismic damage evaluation in urban areas using the capacity spectrum method: Application to Barcelona", Soil Dyn. Earthq. Eng., 28(10-11), 851-865. https://doi.org/10.1016/j.soildyn.2007.10.006.
  4. Beilic, D., Casotto, C., Nascimbene, R., Cicola, D. and Rodrigues, D. (2017), "Seismic fragility curves of single storey RC precast structures by comparing different Italian codes", Earthq. Struct., 12(3), 359-374. https://doi.org/10.12989/eas.2017.12.3.359.
  5. Bhandari, M., Bharti, S.D., Shrimali, M.K. and Datta, T.K. (2018), "Assessment of proposed lateral load patterns in pushover analysis for base-isolated frames", Eng. Struct., 175, 531-548. https://doi.org/10.1016/j.engstruct.2018.08.080.
  6. Bolognini, D., Borzi, B. and Pinho, R. (2008), "Simplified pushover-based vulnerability analysis of traditional Italian RC precast structures", The 14th World Conference on Earthquake Engineering, Beijing, China, October
  7. Casotto, C., Silva, V., Crowley, H., Nascimbene, R. and Pinho, R. (2015), "Seismic fragility of Italian RC precast industrial structures", Eng. Struct., 94, 122-136. https://doi.org/10.1016/j.engstruct.2015.02.034.
  8. Chourasia, A., Kajale, Y., Singhal, S. and Parashar, J. (2020), "Seismic performance assessment of two-storey precast reinforced concrete building", Struct. Concrete, 21(5), 2011-2027. https://doi.org/10.1002/suco.201900146.
  9. Clementi, F., Scalbi, A. and Lenci, S. (2016), "Seismic performance of precast reinforced concrete buildings with dowel pin connections", J. Build. Eng., 7, 224-238. https://doi.org/10.1016/j.jobe.2016.06.013.
  10. Ercolino, M., Magliulo, G. and Manfredi, G. (2016), "Failure of a precast RC building due to Emilia-Romagna earthquakes", Eng. Struct., 118, 262-273. https://doi.org/10.1016/j.engstruct.2016.03.054.
  11. FEMA-NIBS (2003), Multi-Hazardloss Estimation Methodology-Earthquake Model: HAZUS®MH. Advanced Engineering Building Module- Technical and User's Manual, Federal Emergency Management Agency, Washington, D.C., USA.
  12. FEMA 356 (2000), Prestandard and Commentary for the Rehabilitation of Buildings, Federal Emergency Management Agency, Washington, D.C., USA.
  13. Khanbabazadeh, H., Zulfikar, A.C. and Yesilyurt, A. (2020), "Basin edge effect on industrial structures damage pattern at clayey basins", Geomech. Eng., 23(6), 575-585. https://doi.org/10.12989/gae.2020.23.6.575.
  14. HAZUS 99-SR2 (2002), HAZUS Technical Manual, Vol. 1-3, Federal Emergency Management Agency, FEMA and National Institute of Building Sciences, Washington, D.C., USA.
  15. Ingle, A.S., Bharti, S.D., Shrimali, M.K. and Datta, T.K. (2024), "Modeling of precast building frames for seismic response analysis", J. Vib. Eng. Technol., 2024, 1-18. https://doi.org/10.1007/s42417-024-01367-3.
  16. IS 456 (2000), Plain and Reinforced Concrete - Code of Practice, Bureau of Indian Standards, New Delhi, India.
  17. Kappos, A.J., Panagopoulos, G., Panagiotopoulos, C. and Penelis, G. (2006), "A hybrid method for the vulnerability assessment of R/C and URM buildings", Bull. Earthq. Eng., 4(4), 391-413. https://doi.org/10.1007/s10518-006-9023-0.
  18. Karasin, I.B. and Oncu, M.E. (2023), "Comparison of different codes using fragility analysis of a typical school building in Turkiye: Case study of Bingol Celtiksuyu", Earthq. Struct., 25(4), 235-247. https://doi.org/10.12989/eas.2023.25.4.235.
  19. Kim, J.H., Jang, B.S., Choi, S.H., Lee, Y.J., Jeong, H.S. and Kim, K.S. (2021), "Experimental study on lateral behavior of precast wide beam-column joints", Earthq. Struct., 21(6), 653-667. https://doi.org/10.12989/eas.2021.21.6.653.
  20. Minghini, F., Ongaretto, E., Ligabue, V., Savoia, M. and Tullini, N. (2016), "Observational failure analysis of precast buildings after the 2012 Emilia earthquakes", Earthq. Struct., 11(2), 327-346. https://doi.org/10.12989/eas.2016.11.2.327.
  21. Pampanin, S., Nigelpriestley, M.J. and Sritharan, S. (2001), "Analytical modelling of the seismic behaviour of precast concrete frames designed with ductile connections", J. Earthq. Eng., 5(3), 329-368. https://doi.org/10.1080/13632460109350397.
  22. Pratico, L., Bovo, M., Buratti, N. and Savoia, M. (2022), "Largescale seismic damage scenario assessment of precast buildings after the May 2012 Emilia earthquake", Bull. Earthq. Eng., 20(15), 8411-8444. https://doi.org/10.1007/s10518-022-01529-2.
  23. Reyes, J.C. and Kalkan, E. (2012), "How many records should be used in an ASCE/SEI-7 ground motion scaling procedure?", Earthq. Spectra, 28(3), 1223-1242. https://doi.org/10.1193/1.4000066.
  24. SAP2000 (2023), Structural Analysis Program Version: 23.3.1., Computers and Structures Inc., Berkeley, CA, USA.
  25. Senel, S.M., Kayhan, A.H., Palanci, M. and Demir, A. (2024), "Assessment of damages in precast industrial buildings in the aftermath of Pazarcik and Elbistan earthquakes", J. Earthq. Eng., 2024, 1-30. https://doi.org/10.1080/13632469.2024.2336206.
  26. Shariatmadar, H. and Zamani, B.E. (2014), "An investigation of seismic response of precast concrete beam to column connections: Experimental study", Asian J. Civil Eng., 15(6), 849-867.
  27. Song, B., Du, D., Li, W., Wang, S., Wang, Y. and Feng, D. (2020), "Analytical investigation of the differences between cast-in-situ and precast beam-column connections under seismic actions", Appl. Sci., 10(22), 1-16. https://doi.org/10.3390/app10228280.
  28. Surana, M. (2020), "Seismic fragility curves using pulse-like and spectrally equivalent ground-motion records", Earthq. Struct., 19(2), 79-90. https://doi.org/10.12989/eas.2020.19.2.079.
  29. Takeda, T., Sozen, M.A. and Nielsen, N.N. (1970), "Reinforced concrete response to simulated earthquake", J. Struct. Eng. ASCE, 96(12), 2557-2573. https://doi.org/10.1061/JSDEAG.0002765.
  30. Tang, L., Tian, W., Guan, D. and Chen, Z. (2022), "Experimental study of emulative precast concrete beam-to-column connections locally reinforced by U-shaped UHPC shells", Mater., 15(12), 4066. https://doi.org/10.3390/ma15124066.
  31. Tarabia, A.M., Etman, E.E., Allam, S.M. and Aboelhassan, M.G. (2022), "Modeling of precast reinforced concrete beam-column joints under cyclic loading", J. Earthq. Eng., 26(14), 7626-7655. https://doi.org/10.1080/13632469.2021.1964651.
  32. Yesilyurt, A., Cetindemir, O., Akcan, S.O. and Zulfikar, A.C. (2023), "Fragility-based rapid earthquake loss assessment of precast RC buildings in the Marmara region", Struct. Eng. Mech., 88(1), 13-23. https://doi.org/10.12989/sem.2023.88.1.013.
  33. Yesilyurt, A., Zulfikar, A.C. and Tuzun, C. (2021), "Site classes effect on seismic vulnerability evaluation of RC precast industrial buildings", Earthq. Struct., 21(6), 627-639. https://doi.org/10.12989/eas.2021.21.6.627.
  34. Zhang, J., Zhang, B., Rong, X., Li, Y. and Ding, C. (2022), "Experimental investigation on seismic behaviour of hybrid precast beam-column joints with different connection configurations", J. Earthq. Eng., 26(6), 3123-3147. https://doi.org/10.1080/13632469.2020.1787908.