DOI QR코드

DOI QR Code

Histological and Structural Evaluation of Canine Pulmonary Valves Following Cryopreservation

  • Woo-Jin Kim (Department of Veterinary Surgery, College of Veterinary Medicine, Chungnam National University) ;
  • Kyung-Min Kim (Department of Veterinary Surgery, College of Veterinary Medicine, Chungnam National University) ;
  • Won-Jong Lee (Department of Veterinary Surgery, College of Veterinary Medicine, Chungnam National University) ;
  • Chang-Hwan Moon (Department of Veterinary Surgery, College of Veterinary Medicine, Chungnam National University) ;
  • Jaemin Jeong (Department of Veterinary Surgery, College of Veterinary Medicine, Chungnam National University) ;
  • Hae-Beom Lee (Department of Veterinary Surgery, College of Veterinary Medicine, Chungnam National University) ;
  • Seong-Mok Jeong (Department of Veterinary Surgery, College of Veterinary Medicine, Chungnam National University) ;
  • Dae-Hyun Kim (Department of Veterinary Surgery, College of Veterinary Medicine, Chungnam National University)
  • 투고 : 2024.10.09
  • 심사 : 2024.10.24
  • 발행 : 2024.10.31

초록

The objective of this study was to establish a cryopreservation protocol for canine pulmonary valves and assess the preservation quality of the tissue for transplantation. Pulmonary valves were harvested from six beagle dogs, with portions analyzed after antibiotic treatment, while the remaining sections were cryopreserved for six months. Following the thawing process, the cryopreserved valves were evaluated using histological and cellular analyses. The results indicated no significant structural damage in cryopreserved valves when compared to fresh valves. The trilaminar structure, consisting of the fibrosa, spongiosa, and ventricularis layers, was well-preserved, with the extracellular matrix (ECM) largely intact. The fibrosa layer, rich in collagen, exhibited minor disorganization in cryopreserved samples, which was statistically significant. The spongiosa layer, which contains proteoglycans, showed good preservation of its loose and hydrated matrix. Similarly, the ventricularis layer retained its elastic fiber network with minimal alterations. Cell density analysis revealed a mild decrease in cellularity within the fibrosa layer of cryopreserved tissues, but the overall difference in cell count between fresh and cryopreserved tissues was not statistically significant. Cellular viability was maintained, confirming the effectiveness of the cryopreservation protocol in preserving tissue quality. These findings suggest that long-term cryopreservation of canine pulmonary valves could be used for transplantation. This study provides important data for developing tissue banks in veterinary medicine and supports the potential use of cryopreserved valves in canine heart valve transplantation.

키워드

과제정보

This work was supported by a research fund from the Chungnam National University (2024-1150-01).

참고문헌

  1. Acar C, Ali M. Homologous transplantation of the mitral valve: a review. J Cardiovasc Surg (Torino) 2004; 45: 455-464.
  2. Arai S, Griffiths LG, Mama K, Hackett TB, Monnet E, Boon JA, et al. Bioprosthesis valve replacement in dogs with congenital tricuspid valve dysplasia: technique and outcome. J Vet Cardiol 2011; 13: 91-99.
  3. Awan M, Buriak I, Fleck R, Fuller B, Goltsev A, Kerby J, et al. Dimethyl sulfoxide: a central player since the dawn of cryobiology, is efficacy balanced by toxicity? Regen Med 2020; 15: 1463-1491.
  4. Bell D, Prabhu S, Betts KS, Chen Y, Radford D, Whight C, et al. Long-term performance of homografts versus stented bioprosthetic valves in the pulmonary position in patients aged 10-20 years. Eur J Cardiothorac Surg 2018; 54: 946-952.
  5. Bristow P, Sargent J, Luis Fuentes V, Brockman D. Outcome of bioprosthetic valve replacement in dogs with tricuspid valve dysplasia. J Small Anim Pract 2017; 58: 205-210.
  6. Brockbank KG, Dawson PE. Cytotoxicity of amphotericin B for fibroblasts in human heart valve leaflets. Cryobiology 1993; 30: 19-24.
  7. Chester AH, El-Hamamsy I, Butcher JT, Latif N, Bertazzo S, Yacoub MH. The living aortic valve: from molecules to function. Glob Cardiol Sci Pract 2014; 2014: 52-77.
  8. Colli A, Verhoye JP, Heijmen R, Strauch JT, Hyde JA, Pagano D, et al. Antithrombotic therapy after bioprosthetic aortic valve replacement: ACTION Registry survey results. Eur J Cardiothorac Surg 2008; 33: 531-536.
  9. El-Hamamsy I, Clark L, Stevens LM, Sarang Z, Melina G, Takkenberg JJ, et al. Late outcomes following freestyle versus homograft aortic root replacement: results from a prospective randomized trial. J Am Coll Cardiol 2010; 55: 368-376.
  10. Fabian O, Havova M, Gebauer R, Poruban R, Spatenka J, Burkert J, et al. Structural integrity and cellular viability of cryopreserved allograft heart valves in right ventricular outflow tract reconstruction: correlation of histopathological changes with donor characteristics and preservation times. Braz J Cardiovasc Surg 2022; 37: 639-647.
  11. Gurtovenko AA, Anwar J. Modulating the structure and properties of cell membranes: the molecular mechanism of action of dimethyl sulfoxide. J Phys Chem B 2007; 111: 10453-10460.
  12. Hamilton DI, Gerbode F. Mitral valve replacement in dogs using pig aortic valve heterografts. Thorax 1968; 23: 239-248.
  13. Hopkins RA. Cardiac reconstructions with allograft tissues. New York: Springer. 2005: 140.
  14. Huyan Y, Chang Y, Song J. Application of homograft valved conduit in cardiac surgery. Front Cardiovasc Med 2021; 8: 740871.
  15. Jashari R. Transplantation of cryopreserved human heart valves in Europe: 30 years of banking in Brussels and future perspectives. Cell Tissue Bank 2021; 22: 519-537.
  16. Kashima I, Yozu R, Shin H, Yamada T, Hata J, Kawada S. Effect of storage temperature on cell viability in cryopreserved canine aortic, pulmonic, mitral, and tricuspid valve homografts. Jpn J Thorac Cardiovasc Surg 1999; 47: 153-157.
  17. Kim JB, Ejiofor JI, Yammine M, Camuso JM, Walsh CW, Ando M, et al. Are homografts superior to conventional prosthetic valves in the setting of infective endocarditis involving the aortic valve? J Thorac Cardiovasc Surg 2016; 151: 1239-1248.e2.
  18. Kitagawa T, Masuda Y, Tominaga T, Kano M. Cellular biology of cryopreserved allograft valves. J Med Invest 2001; 48: 123-132.
  19. Korossis S. Structure-function relationship of heart valves in health and disease. In: Kirali K, editor. Structural insufficiency anomalies in cardiac valves. London: IntechOpen. 2018: 1-38.
  20. Kostyunin AE, Yuzhalin AE, Rezvova MA, Ovcharenko EA, Glushkova TV, Kutikhin AG. Degeneration of bioprosthetic heart valves: update 2020. J Am Heart Assoc 2020; 9: e018506.
  21. Lisy M, Kalender G, Schenke-Layland K, Brockbank KG, Biermann A, Stock UA. Allograft heart valves: current aspects and future applications. Biopreserv Biobank 2017; 15: 148-157.
  22. Marathe SP, Bell D, Betts K, Sayed S, Dunne B, Ward C, et al. Homografts versus stentless bioprosthetic valves in the pulmonary position: a multicentre propensity-matched comparison in patients younger than 20 years. Eur J Cardiothorac Surg 2019; 56: 377-384.
  23. Matsumura K, Hayashi F, Nagashima T, Rajan R, Hyon SH. Molecular mechanisms of cell cryopreservation with polyampholytes studied by solid-state NMR. Commun Mater 2021; 2: 15.
  24. Nair V, Law KB, Li AY, Phillips KR, David TE, Butany J. Characterizing the inflammatory reaction in explanted Medtronic Freestyle stentless porcine aortic bioprosthesis over a 6-year period. Cardiovasc Pathol 2012; 21: 158-168.
  25. O'Brien MF, Stafford EG, Gardner MA, Pohlner PG, McGiffin DC. A comparison of aortic valve replacement with viable cryopreserved and fresh allograft valves, with a note on chromosomal studies. J Thorac Cardiovasc Surg 1987; 94: 812-823.
  26. Paolin A, Trojan D, Petit P, Coato P, Rigoli R. Evaluation of allograft contamination and decontamination at the Treviso Tissue Bank Foundation: a retrospective study of 11,129 tissues. PLoS One 2017; 12: e0173154.
  27. Pappas G, Titus JL, Ellis FH Jr. Heterotransplantation of goat mitral valves in dogs. Survival and histologic response. Ann Surg 1966; 164: 215-222.
  28. Rastelli GC, Berghuis J, Swan HJ. Evaluation of function of mitral valve after homotransplantation in the dog. J Thorac Cardiovasc Surg 1965; 49: 459-474.
  29. Rendal Vazquez ME, Diaz Roman TM, Rodriguez Cabarcos M, Zavanella Botta C, Domenech Garcia N, Gonzalez Cuesta M, et al. Apoptosis in fresh and cryopreserved cardiac valves of pig samples. Cell Tissue Bank 2008; 9: 101-107.
  30. Rendal Vazquez ME, Roman TD, Cuesta MG, Botta CZ, Ibanez JS, Diaz SP, et al. Viability and histologic structure of porcine valves after cryopreservation. Ann Thorac Surg 2004; 77: 186-190.
  31. Schenke-Layland K, Madershahian N, Riemann I, Starcher B, Halbhuber KJ, Konig K, et al. Impact of cryopreservation on extracellular matrix structures of heart valve leaflets. Ann Thorac Surg 2006; 81: 918-926.
  32. Shetty R, Pibarot P, Audet A, Janvier R, Dagenais F, Perron J, et al. Lipid-mediated inflammation and degeneration of bioprosthetic heart valves. Eur J Clin Invest 2009; 39: 471-480.
  33. Smedira NG, Blackstone EH, Roselli EE, Laffey CC, Cosgrove DM. Are allografts the biologic valve of choice for aortic valve replacement in nonelderly patients? Comparison of explantation for structural valve deterioration of allograft and pericardial prostheses. J Thorac Cardiovasc Surg 2006; 131: 558-564.e4.
  34. Taguchi D, Kanemoto I, Yokoyama S, Mizuno M, Washizu M. Mitral valve replacement with a mechanical valve for severe mitral regurgitation in a small dog. Case Rep Vet Med 2014; 2014: 892625.
  35. Vasquez-Rivera A, Oldenhof H, Dipresa D, Goecke T, Kouvaka A, Will F, et al. Use of sucrose to diminish pore formation in freeze-dried heart valves. Sci Rep 2018; 8: 12982.
  36. Wassenaar C, Wijsmuller EG, Van Herwerden LA, Aghai Z, Van Tricht CL, Bos E. Cracks in cryopreserved aortic allografts and rapid thawing. Ann Thorac Surg 1995; 60(2 Suppl): S165-S167.
  37. Whaley D, Damyar K, Witek RP, Mendoza A, Alexander M, Lakey JR. Cryopreservation: an overview of principles and cell-specific considerations. Cell Transplant 2021; 30: 963689721999617.
  38. Williams ML, Brookes JD, Jaya JS, Tan E. Homograft versus valves and valved conduits for extensive aortic valve endocarditis with aortic root involvement/destruction: a systematic review and meta-analysis. Aorta (Stamford) 2022; 10: 43-51.