DOI QR코드

DOI QR Code

UAM 운용을 위한 도시 건축물 간접 효과 반영 고해상도 풍속 규모상세화 체계 구축 및 평가

Development and Evaluation of High Resolution Wind Speed Downscaling System for UAM Applying Indirect Urban Building Effect

  • 곽병현 (주식회사 포디솔루션 기업부설연구소) ;
  • 김기영 (주식회사 포디솔루션 기업부설연구소) ;
  • 원완식 (한국항공대학교 항공교통물류학부)
  • 투고 : 2024.08.16
  • 심사 : 2024.11.08
  • 발행 : 2024.11.30

초록

Urban air mobility (UAM) is emerging as a solution to alleviate traffic congestion in urban areas. For the successful implementation and stable operation of UAM, acquiring high-resolution meteorological data, particularly wind, is essential. Despite the existence of various studies that have assessed meteorological downscaling systems, there is little research focusing specifically on the urban environment, where the dynamics of wind and weather patterns are more complex. In response to this need, our study advances and introduces a sophisticated downscaling system designed to facilitate high-resolution (100 m) wind speed simulations based on module in IMPROVER (Integrated Model post-PROcessing and VERification) from Met Office. This system takes into account intricate surface details, including orography, and the characteristics of urban landscapes are represented to enhance simulation accuracy and realism by incorporating the indirect effects of urban buildings. The system is quantitatively evaluated by Pearson correlation coefficient, root mean square error, and mean bias error, demonstrating better correlation and improved predictability relative to raw meteorological data. These results emphasize the significance of downscaling system specialized for urban areas, highlighting its contribution to reliable and realistic wind conditions.

키워드

과제정보

이 연구는 국토교통부 「기후적 요소를 고려한 UAM PORT 위치선정 기법 연구」(21CTAP-C164083-01)와 기상청 「수요자 맞춤형 항공기상서비스 기술개발」(RS-2024-00403421)의 지원으로 수행되었습니다.

참고문헌

  1. de Rooy, W. C., and K. Kok, 2004: A combined physical-statistical approach for the downscaling of model wind speed. Wea. Forecasting, 19, 485-495, doi:10.1175/1520-0434(2004)019<0485:ACPAFT>2.0.CO;2.
  2. Farr, T. G., and Coauthors, 2007: The shuttle radar topography mission. Rev. Geophys., 45, RG2004, doi:10.1029/2005RG000183.
  3. Giorgi, F., J. William, and Jr. Gutowski, 2015: Regional dynamical downscaling and the CORDEX initiative. Annu. Rev. Environ. Resour., 40, 467-490, doi:10.1146/annurev-environ-102014-021217.
  4. Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999-2049, doi:10.1002/qj.3803.
  5. Hewitson, B. C., and R. G. Crane, 1996: Climate downscaling: Techniques and application. Climate Res., 7, 85-95, doi:10.3354/cr007085.
  6. Howard, T., and P. Clark, 2007: Correction and downscaling of NWP wind speed forecasts. Meteorol. Appl., 14, 105-116, doi:10.1002/met.12.
  7. Keum, W.-H., S.-H. Lee, D.-I. Lee, S.-S. Lee, and Y.-H, Kim, 2021: Evaluation and improvement of the KMAPP surface wind speed prediction over complex terrain areas. Atmosphere, 31, 85-100, doi:10.14191/Atmos.2021.31.1.085.
  8. Macdonald, R. W., R. F. Griffiths, and D. J. Hall, 1998: An improved method for estimation of surface roughness of obstacle arrays. Atmos. Environ., 32, 1857-1864, doi:10.1016/S1352-2310(97)00403-2.
  9. NASA, 2020: UAM Vision Concept of Operations (ConOps) UAM Maturity Level (UML) 4. National Aeronautics and Space Administration, [Available online at https://www.nasa.gov/directorates/armd/aosp/uam-vision-concept-of-operations-conops-uam-maturity-level-uml-4/].
  10. Nawri, N., G. N. Petersen, H. Bjornsson, A. N. Hahmann, K. Jonasson, C. B. Hasager, and N.-E. Clausen, 2014: The wind energy potential of Iceland. Renewable Energy, 69, 290-299, doi:10.1016/j.renene.2014.03.040.
  11. Porson, A., P. A. Clark, I. N. Harman, M. J. Best, and S. E. Belcher, 2010: Implementation of a new urban energy budget scheme in the MetUM. Part I: Description and idealized simulations. Quart. J. Roy. Meteor. Soc., 136, 1514-1529, doi:10.1002/qj.668.
  12. Pryor, S. C., J. T. Schoof, and R. J. Barthelmie, 2005: Empirical downscaling of wind speed probability distributions. J. Geophys. Res., 110, D19109, doi:10.1029/2005JD005899.
  13. Roberts, N., and Coauthors, 2023: IMPROVER: The new probabilistic postprocessing system at the Met office. Bull. Amer. Meteor. Soc., 104, E680-E697, doi:10.1175/BAMS-D-21-0273.1.
  14. Sanz Rodrigo, J., R. C. Chavez Arroyo, P. Moriarty, M. Churchfield, B. Kosovic, P.-E. Rethore, K. Hansen, A. Hahmann, J. Mirocha, and D. Rife, 2017: Mesoscale to microscale wind farm flow modeling and evaluation. WIREs Energy Environ, 6, e214, doi:10.1002/wene.214.
  15. Schoof, J. T., 2013: Statistical downscaling in climatology. Geography Compass, 7, 249-265, doi:10.1111/gec3.12036.
  16. Tang, J., X. Niu, S. Wang, H. Gao, X. Wang, and J. Wu, 2016: Statistical downscaling and dynamical downscaling of regional climate in China: Present climate evaluations and future climate projections. J. Geophys. Res. Atmos., 121, 2110-2129, doi:10.1002/2015JD023977.
  17. UAM Team Korea, 2021: Operating Concept of Korean Urban Air Mobility (K-UAM) 1.0. MOLIT, [Available online at https://www.molit.go.kr/USR/NEWS/m_71/dtl.jsp?lcmspage=1&id=95086041] (in Korean).
  18. Webster, S., A. R. Brown, D. R. Cameron, and C. P. Jones, 2003: Improvements to the representation of orography in the Met Office Unified Model. Quart. J. Roy. Meteor. Soc., 129, 1989-2010, doi:10.1256/qj.02.133.
  19. Yi, C., T. H. Kwon, M.-S. Park, Y. J. Choi, and S. M. An, 2015: A study on the roughness length spatial distribution in relation to the Seoul building morphology. Atmosphere, 25, 339-351, doi:10.14191/Atmos.2015.25.2.339.