DOI QR코드

DOI QR Code

뉴욕 주의 악기상 현상에 대한 뉴욕 주 Mesonet 도플러 윈드 라이다의 자료동화 효과

Impact of Assimilation of New York State Mesonet Doppler Wind Lidar on High Impact Weather Predictions in New York State

  • 계준경 (미국 국립 대기연구센터) ;
  • Junkyung Kay (National Center for Atmospheric Research) ;
  • Tammy M. Weckwerth (National Center for Atmospheric Research)
  • 투고 : 2024.11.02
  • 심사 : 2024.11.06
  • 발행 : 2024.11.30

초록

The New York State (NYS) Mesonet consists of 126 surface weather stations across the state with 17 of the sites also instrumented with active and passive profiler systems. The NYS Mesonet (NYSM) is the first and only state-run network in the USA, that includes a combination of surface stations, Doppler wind lidars (DWL) and thermodynamic profiles from Microwave Radiometers (MWR). NYSM's continuous and extensive observations from the surface to the lower atmosphere have a wide range of applications in air quality and human health, forecasting of severe storms, and predicting renewable energy production. This study provides results of assimilating the NYSM surface station data and the DWL wind profiles. The impact of NYSM observations on predictive skill is evaluated for one tornadic supercell case that has large uncertainties in analysis with respect to low-level temperature, moisture, and wind variability. Compared to forecasts assimilating solely conventional observations except NYSM, the additional assimilation of NYSM observations effectively corrects the cold and dry biases in central New York State, resulting in a more accurate representation of surface conditions. Notably, the assimilation of NYSM DWL wind profiles improves the prediction of the location and intensity of convective systems, thereby creating an environment that increases the likelihood of supercell and tornado formation.

키워드

과제정보

본 논문의 개선을 위해 좋은 의견을 제시해 주신 두 분의 심사위원께 감사 드립니다. 본 연구 자료는 협력 계약 번호 1852977에 따라 미국 National Science Foundation (NSF)의 지원을 받는 주요 시설인 National Center for Atmospheric Research (NCAR)의 지원을 받아 수행된 연구에 기반합니다. 또한 NSF가 후원하는 NCAR의 Computational and Information Systems Laboratory (CISL)에서 제공하는 Cheyenne (doi:10.5065/D6RX99HX)의 고성능 컴퓨팅 지원에 감사드립니다. 본 연구는 미국 국립해양대기청의 Weather Program Office의 지원사업 (NOAA Award No. NA23OAR4590399)의 일환으로 수행되었습니다. 본 연구 결과의 분석에 도움을 주신NSF NCAR의 Dr. James O. Pinto와 Dr. Matthew B. Wilson 께 감사드립니다.

참고문헌

  1. Aitken, M. L., M. E. Rhodes, and J. K. Lundquist, 2012: Performance of a Wind-Profiling lidar in the region of wind turbine rotor disks. J. Atmos. Oceanic Technol., 29, 347-355, doi:10.1175/JTECH-D-11-00033.1.
  2. Anderson, J. L. , T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Avellano, 2009: The data assimilation research testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 1283-1296, doi:10.1175/2009BAMS2618.1.
  3. Barker, D. M., W. Huang, Y.-R. Guo, A. J. Bourgeois, and Q. N. Xio, 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897-914, doi:10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2.
  4. Brotzge, J., and Coauthors, 2020: A technical overview of the New York State Mesonet standard network. J. Atmos. Oceanic Technol., 37, 1827-1845, doi:10.1175/JTECH-D-19-0220.1.
  5. Chan, S. C., E. J. Kendon, H. J. Fowler, A. Kahraman, J. Crook, N. Ban, and A. F. Prein, 2023: Large-scale dynamics moderate impact-relevant changes to organised convective storms. Commun. Earth Environ., 4, doi:10.1038/s43247-022-00669-2.
  6. Chipilski, H. G., X. Wang, and D. B. Parsons, 2020: Impact of assimilating PECAN profilers on the prediction of bore-driven nocturnal convection: A multiscale forecast evaluation for the 6 July 2015 case study. Mon. Wea. Rev., 148, 1147-1175, doi:10.1175/MWR-D-19-0171.1.
  7. Chipilski, H. G., H. G., X. Wang, D. B. Parsons, A. Johnson, and S. K. Degelia, 2022: The value of assimilating different ground-based profiling networks on the forecasts of bore-generating nocturnal convection. Mon. Wea. Rev., 150, 1273-1292, doi:10.1175/MWR-D-21-0193.1.
  8. Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, 2005: Atmospheric radiative transfer modeling: a summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer, 91, 233-244, doi:10.1016/j.jqsrt.2004.05.058.
  9. Coniglio, M. C., J. Correia Jr., P. T. Marsh, and F. Kong, 2013: Verification of convection-allowing WRF model forecasts of the planetary boundary layer using sounding observations. Wea. Forecasting, 28, 842- 862, doi:10.1175/WAF-D-12-00103.1.
  10. Coniglio, M. C., G. S. Romine, D. D. Turner, and R. D. Torn, 2019: Impacts of targeted AERI and doppler lidar wind retrievals on short-term forecasts of the initiation and early evolution of thunderstorms. Mon. Wea. Rev., 147, 1149-1170, doi:10.1175/MWR-D-18-0351.1.
  11. Degelia, S. K., X. Wang, and D. J. Stensrud, 2019: An evaluation of the impact of assimilating AERI retrievals, kinematic profilers, rawinsondes, and surface observations on a forecast of a nocturnal convection initiation event during the PECAN field campaign. Mon. Wea. Rev., 147, 2739-2764, doi:10.1175/MWRD-18-0423.1.
  12. Degelia, S. K., X. Wang, D. J. Stensrud, and D. D. Turner, 2020: Systematic evaluation of the impact of assimilating a network of ground-based remote sensing profilers for forecasts of nocturnal convection initiation during PECAN. Mon. Wea. Rev., 148, 4703-4728, doi:10.1175/MWR-D-20-0118.1.
  13. Dowell, D. C., and Coauthors, 2022: The High-Resolution Rapid Refresh (HRRR): An hourly updating convection-allowing forecast model. Part 1: Motivation and system description. Wea. Forecasting, 37, 1371-1396, doi:10.1175/WAF-D-21-0151.1.
  14. Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723-757, doi:10.1002/qj.49712555417.
  15. Geerts, B., and Coauthors, 2017: The 2015 plains elevated convection at night field project. Bull. Amer. Meteor. Soc., 98, 767-786, doi:10.1175/BAMS-D-15-00257.1.
  16. Hanesiak, J., and D. D. Turner, 2016: FP3 University of Manitoba Doppler Lidar wind profile data (version 1.0). UCAR/NCAR Earth Observing Laboratory, accessed 14 March 2018, doi:10.5065/D60863P5.
  17. Hu, J., N. Yussouf, D. D. Turner, T. A. Jones, and X. Wang, 2019: Impact of ground-based remote sensing boundary layer observations on short-term probabilistic forecasts of a tornadic supercell event. Wea. Forecasting, 34, 1453-1476, doi:10.1175/WAF-D-18-0200.1.
  18. Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.
  19. James, E. P., and S. G. Benjamin, 2017: Observation system experiments with the hourly updating rapid refresh model using GSI hybrid ensemble-variational data assimilation. Mon. Wea. Rev., 145, 2897-2918, doi:10.1175/MWR-D-16-0398.1.
  20. Johnson, A., X. Wang, J. R. Carley, L. J. Wicker, and C. Karstens, 2015: A comparison of multiscale GSI-based EnKF and 3DVar data assimilation using radar and conventional observations for midlatitude convective-scale precipitation forecasts. Mon. Wea. Rev., 143, 3087-3108, doi:10.1175/MWR-D-14-00345.1.
  21. Jones, T. A., K. Knopfmeier, D. Wheatley, G. Creager, P. Minnis, and R. Palikonda, 2016: Storm-scale data assimilation and ensemble forecasting with the NSSL experimental Warn-on-Forecast system. Part II: Combined radar and satellite data experiments. Wea. Forecasting, 31, 297-327, doi:10.1175/WAF-D-15-0107.1.
  22. Kay, J., T. M. Weckwerth, W.-C. Lee, J. Sun, and G. Romine, 2022: An OSSE study of the impact of Micropulse Differential Absorption Lidar (MPD) water vapor profiles on convective weather forecasting. Mon. Wea. Rev., 150, 2787-2811, doi:10.1175/MWR-D-21-0284.1.
  23. Kerr, C. A., D. J. Stensrud, and X. Wang, 2019: Diagnosing convective dependencies on near-storm environments using ensemble sensitivity analyses. Mon. Wea. Rev., 147, 495-517, doi:10.1175/MWR-D-18-0140.1.
  24. Lin, H.-C., J. Sun, T. M. Weckwerth, E. Joseph, and J. Kay, 2023: Assimilation of New York State mesonet surface and profiler data for the 21 June 2021 convective event. Mon. Wea. Rev., 151, 485-507, doi:10.1175/MWR-D-22-0136.1.
  25. Nakanishi, M. and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895-912, doi:10.2151/jmsj.87.895.
  26. NOAA, and NSSL, 2019: MRMS Merged Reflectivity Composite Quality Controlled Data. Version 1.0. UCAR/NCAR - Earth Observing Laboratory. National Oceanic and Atmospheric Administration, National Severe Storms Laboratory, Accessed 11 Jul 2023, doi:10.26023/4551-7ZYR-Z00J.
  27. Olson, J. B., J. S. Kenyon, W. A. Angevine, J. M. Brown, M. Pagowski, and K. Suselj, 2019: A description of the MYNN-EDMF scheme and coupling to other components in WRF-ARW. NOAA Tech. Memo. OAR GSD, 61, 37 pp doi:10.25923/n9wm-be49.
  28. Pearson, G., F. Davies, and C. Collier, 2009: An analysis of the performance of the UFAM pulsed doppler lidar for observing the boundary layer. J. Atmos. Oceanic Technol., 26, 240-250, doi:10.1175/2008JTECHA1128.1.
  29. Potvin, C. K. , L. J. Wicker, M. I. Biggerstaff, D. Betten, and A. Shapiro, 2013: Comparison between dual-Doppler and EnKF storm-scale wind analyses: The 29~30 May 2004 Geary, Oklahoma, supercell thunderstorm. Mon. Wea. Rev., 141, 1612-1628, doi:10.1175/MWR-D-12-00308.1.
  30. Powers, J. G., and Coauthors, 2017: The Weather Research and Forecasting (WRF) model: Overview, system efforts, and future directions. Bull. Amer. Meteor. Soc., 98, 1717-1737, doi:10.1175/BAMS-D-15-00308.1.
  31. Reen, B. P., 2007: Data assimilation strategies and land-surface heterogeneity effects in the planet boundary layer. The Pennsylvania State University, 246 pp.
  32. Reese, D., 2019: A New York State Mesonet based analysis on squall line cold pool strength. University at Albany, State University of New York, 95 pp.
  33. Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 78-97, doi:10.1175/2007MWR2123.1.
  34. Romine, G. S., C. S. Schwartz, C. Snyder, J. L. Anderson, and M. L. Weisman, 2013: Model bias in a continuously cycled assimilation system and its influence on convection-permitting forecasts. Mon. Wea. Rev., 141, 1263-1284, doi:10.1175/MWR-D-12-00112.1.
  35. Sandu, I., A. Beljaars, P. Bechtold, T. Mauritsen, and G. Balsamo, 2013: Why is it so difficult to represent stably stratified conditions in numerical weather prediction (NWP) models? J. Adv. Model. Earth Syst., 5, 117-133, doi:10.1002/jame.20013.
  36. Schwartz, C. S., G. S. Romine, M. L. Weisman, R. A. Sobash, K. R. Fossell, K. W. Manning, and S. B. Trier, 2015: A real-time convection-allowing ensemble prediction system initialized by mesoscale ensemble Kalman filter analyses. Wea. Forecasting, 30, 1158-1181, doi:10.1175/WAF-D-15-0013.1.
  37. Schwartz, C. S., and R. A. Sobash, 2017: Generating probabilistic forecasts from convection-allowing ensembles using neighborhood approaches: A review and recommendations. Mon. Wea. Rev., 145, 3397-3418, doi:10.1175/MWR-D-16-0400.1.
  38. Shrestha, B., J. A. Brotzge, J. Wang, N. Bain, C. D. Thorncroft, E. Joseph, J. Freedman, and S. Perez, 2021: Overview and applications of the New York State Mesonet profiler Network. J. Appl. Meteor. Climatol., 60, 1591-1611, doi:10.1175/JAMC-D-21-0104.1.
  39. Skamarock, W. C. , J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp doi:10.5065/D68S4MVH.
  40. Snook, N., M. Xue, and Y. Jung, 2011: Analysis of a tornadic mesoscale convective vortex based on ensemble Kalman filter assimilation of CASA X-band and WSR-88D radar data. Mon. Wea. Rev., 139, 3446-3468, doi:10.1175/MWR-D-10-05053.1.
  41. Sobash, R. A., and D. J. Stensrud, 2015: Assimilating surface mesonet observations with the EnKF to improve ensemble forecasts of convection initiation on 29 May 2012. Mon. Wea. Rev., 143, 3700-3725, doi:10.1175/MWR-D-14-00126.1.
  42. SPC, 2023: SPC convective outlooks. Storm Prediction Center, [Available online at http://www.spc.noaa.gov/cgi-bin-spc/getacrange.pl].
  43. Stensrud, D. J., and Coauthors, 2013: Progress and challenges with Warn-on-Forecast. Atmos. Res., 123, 2-16, doi:10.1016/j.atmosres.2012.04.004.
  44. Sun, J., S. B. Trier, Q. Xiao, M. L. Weisman, H. Wang, Z. Ying, M. Xu, and Y. Zhang, 2012: Sensitivity of 0~12-h warm-season precipitation forecasts over the central United States to model initialization. Wea. Forecasting, 27, 832-855, doi:10.1175/WAF-D-11-00075.1.
  45. Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 3636-3658, doi:10.1175/JAS-D-13-0305.1.
  46. Torn, R. D., G. J. Hakim, and C. Snyder, 2006: Boundary conditions for limited area ensemble Kalman filters. Mon. Wea. Rev., 134, 2490-2502, doi:10.1175/MWR3187.1.
  47. Turner, D. D., and W. G. Blumberg, 2019: Improvements to the AERIoe thermodynamic profile retrieval algorithm. IEEE J. Selected Topics Appl. Earth Obs. Remote Sens., 12, 1339-1354, doi:10.1109/JSTARS.2018.2874968.
  48. Vendrasco, E. P., J. Sun, D. L. Herdies, and C. Frederico de Angelis, 2016: Constraining a 3DVAR radar data assimilation system with Large-Scale analysis to improve Short-Range precipitation forecasts. J. Appl. Meteor. Climatol., 55, 673-690, doi:10.1175/JAMCD-15-0010.1.
  49. Wheatley, D. M., K. H. Knopfmeier, T. A. Jones, and G. J. Creager, 2015: Storm-scale data assimilation and ensemble forecasting with the NSSL experimental Warn-on-Forecast system. Part I: Radar data experiments. Wea. Forecasting, 30, 1795-1817, doi:10.1175/WAF-D-15-0043.1.
  50. Whitaker, J. S., and T. M. Hamill, 2012: Evaluating methods to account for system errors in ensemble data assimilation. Mon. Wea. Rev., 140, 3078-3089, doi:10.1175/MWR-D-11-00276.1.
  51. Wulfmeyer, V. , R. M. Hardesty, D. D. Turner, A. Behrendt, M. P. Cadeddu, P. Di Girolamo, P. Schluessel, J. van Baelen, and F. Zus, 2015: A review of the remote sensing of lower tropospheric thermodynamic profiles and its indespensible role for the understanding and simulation of water and energy cycles. Rev. Geophys., 53, 819-895, doi:10.1002/2014RG000476.
  52. Zhang, F., Z. Meng, and A. Aksoy, 2006: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part I: Perfect model experiments. Mon. Wea. Rev., 134, 722-736, doi:10.1175/MWR3101.1.
  53. Zhang, J., K. Howard, and J. J. Gourley, 2005: Constructing three-dimensional multiple-radar reflectivity mosaics: Examples of convective storms and stratiform rain echoes. J. Atmos. Oceanic Technol., 22, 30-42, doi:10.1175/JTECH-1689.1.