DOI QR코드

DOI QR Code

Asymmetric Tropopause Height Change to Symmetric CO2 Change

대칭적 이산화탄소 증감에 대한 대류권계면 높이의 비대칭적 반응

  • Seohyun Chung (School of Earth and Environmental Sciences, Seoul National University) ;
  • Seok-Woo Son (School of Earth and Environmental Sciences, Seoul National University)
  • 정서현 (서울대학교 지구환경과학부) ;
  • 손석우 (서울대학교 지구환경과학부)
  • Received : 2024.07.19
  • Accepted : 2024.09.04
  • Published : 2024.11.30

Abstract

It has been widely documented how climate systems respond to net zero carbon emissions. While the reversibility of surface climate variables under CO2 removal has been reported, tropopause height change has not been addressed. By using multi-model simulations where CO2 concentrations are symmetrically ramped up and down, the present study investigates how zonal-mean temperature distribution and tropopause height respond to varying CO2 pathway. During the ramp-up period, tropospheric warming and stratospheric cooling get strengthened, causing tropopause to rise in both the tropics and extratropics. Such changes are reversed during the ramp-down period as CO2 concentrations are reduced. However, their recovery is slower, leaving the tropopause height at the end of CO2 removal higher than its initial state. Such asymmetric response in tropopause height is mainly attributable to upper tropospheric rather than lower stratospheric temperature changes. This finding suggests that hysteresis behavior of climate systems to CO2 removal may occur not only at the surface but also at the tropopause.

Keywords

Acknowledgement

이 연구는 2024년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원[NO. RS-2021-II211343, 인공지능대학원지원(서울대학교)]과 한국연구재단의 지원을 받아 수행되었습니다(NRF-2018R1A5A1024958).

References

  1. Boucher, O., and Coauthors, 2012: Reversibility in an Earth System model in response to CO2 concentration changes. Environ. Res. Lett., 7, 024013, doi:10.1088/1748-9326/7/2/024013.
  2. Butchart, N., and Coauthors, 2006: Simulations of anthropogenic change in the strength of the Brewer-Dobson circulation. Climate Dyn., 27, 727-741, doi:10.1007/s00382-006-0162-4.
  3. Butchart, N., and Coauthors, 2010: Chemistry-climate model simulations of twenty-first century stratospheric climate and circulation changes. J. Climate, 23, 5349-5374, doi:10.1175/2010JCLI3404.1.
  4. Held, I. M., 1993: Large-scale dynamics and global warming. Bull. Amer. Meteor. Soc., 74, 228-242, doi:10.1175/1520-0477(1993)074<0228:LSDAGW>2.0.CO;2.
  5. Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999-2049, doi:10.1002/qj.3803.
  6. Highwood, E. J., and B. J. Hoskins, 1998: The tropical tropopause. Quart. J. Roy. Meteor. Soc., 124, 1579-1604, doi:10.1002/qj.49712454911.
  7. Keller, D. P., and Coauthors, 2018: The Carbon Dioxide Removal Model Intercomparison Project (CDRMIP): Rationale and experimental protocol for CMIP6. Geosci. Model Dev., 11, 1133-1160, doi:10.5194/gmd-11-1133-2018.
  8. Kim, S.-K., J. Shin, S.-I. An, H.-J. Kim, N. Im, S.-P. Xie, J.-S. Kug, and S.-W. Yeh, 2022: Widespread irreversible changes in surface temperature and precipitation in response to CO2 forcing. Nature Climate Change, 12, 834-840, doi:10.1038/s41558-022-01452-z.
  9. Kushner, P. J., I. M. Held, and T. L. Delworth, 2001: Southern hemisphere atmospheric circulation response to global warming. J. Climate, 14, 2238-2249, doi:10.1175/1520-0442(2001)014<0001:SHACRT>2.0.CO;2.
  10. Lawrence, Z. D., and Coauthors, 2022: Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems. Weather Clim. Dynam., 3, 977-1001, doi:10.5194/wcd-3-977-2022.
  11. Lee, J., H.-J. Baek, and C. Cho, 2013: Vertical distribution of temperature and tropopause height changes in future projections using HadGEM2-AO climate model. Atmosphere, 23, 367-375, doi:10.14191/atmos.2013.23.4.367 (in Korean with English abstract).
  12. Lorenz, D. J., and E. T. DeWeaver, 2007: Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res. Atmos., 112, D10119, doi:10.1029/2006JD008087.
  13. Manabe, S., and R. T. Wetherald, 1980: On the distribution of climate change resulting from an increase in CO2 content of the atmosphere. J. Atmos. Sci., 37, 99-118, doi:10.1175/1520-0469(1980)037<0099:OTDOCC>2.0.CO;2.
  14. McLandress, C., and T. G. Shepherd, 2009: Simulated anthropogenic changes in the Brewer-Dobson circulation, including its extension to high latitudes. J. Climate, 22, 1516-1540, doi:10.1175/2008JCLI2679.1.
  15. O'Neill, B. C., and Coauthors, 2016: The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev., 9, 3461-3482, doi:10.5194/gmd-9-3461-2016.
  16. Raisanen, J., 2003: CO2-induced changes in atmospheric angular momentum in CMIP2 experiments. J. Climate, 16, 132-143, doi:10.1175/1520-0442(2003)016<0132:CICIAA>2.0.CO;2.
  17. Randall, D. A., and Coauthors, 2007: Cilmate Models and Their Evaluation. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 589-662.
  18. Santer, B. D., and Coauthors, 2003: Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science, 301, 479-483, doi:10.1126/science.1084123.
  19. Sgubin, G., D. Swingedouw, S. Drijfhout, S. Hagemann, and E. Robertson, 2015: Multimodel analysis on the response of the AMOC under an increase of radiative forcing and its symmetrical reversal. Climate Dyn., 45, 1429-1450, doi:10.1007/s00382-014-2391-2.
  20. Shepherd, T. G., I. Polichtchouk, R. J. Hogan, and A. J. Simmons, 2018: Report on stratosphere task force. 32 pp, doi:10.21957/0vkp0t1xx.
  21. Slownik, W., 1992: International meteorological vocabulary, 1992. WMO, 784 pp.
  22. Son, S.-W., and Coauthors, 2009: The impact of stratospheric ozone recovery on tropopause height trends. J. Climate, 22, 429-445, doi:10.1175/2008JCLI2215.1.
  23. Wu, P., R. Wood, J. Ridley, and J. Lowe, 2010: Temporary acceleration of the hydrological cycle in response to a CO2 rampdown. Geophys. Res. Lett., 37, doi:10.1029/2010GL043730.
  24. Wu, P., J. Ridley, A. Pardaens, R. Levine, and J. Lowe, 2015: The reversibility of CO2 induced climate change. Climate Dyn., 45, 745-754, doi:10.1007/s00382-014-2302-6.
  25. Wu, Z., and T. Reichler, 2020: Variations in the frequency of stratospheric sudden warmings in CMIP5 and CMIP6 and possible causes. J. Climate, 33, 10305-10320, doi:10.1175/JCLI-D-20-0104.1.
  26. Young, P. J., D. W. J. Thompson, K. H. Rosenlof, S. Solomon, and J. F. Lamarque, 2011: The seasonal cycle and interannual variability in stratospheric temperatures and links to the Brewer-Dobson circulation: An analysis of MSU and SSU data. J. Climate, 24, 6243-6258, doi:10.1175/JCLI-D-10-05028.1.
  27. Yulaeva, E., J. R. Holton, and J. M. Wallace, 1994: On the cause of the annual cycle in tropical lower-stratospheric temperatures. J. Atmos. Sci., 51, 169-174, doi:10.1175/1520-0469(1994)051<0169:OTCOTA>2.0.CO;2.