Acknowledgement
본 논문은 국방과학연구소를 통해 인공지능 비행제어 특화연구실 산하 인공지능 기반 합성 센서 영상 분석 및 개선기법 연구(IC-05) 관련 지원을 받아 수행되었음(UD230014SD).
References
- Y. Wang, C. Peng, H. Zhang, and H. Q. Le, "Wavelength modulation imaging with tunable mid-infrared semiconductor laser: spectroscopic and geometrical effects," Optics Express, Vol. 12, No. 21, pp. 5243-5257, 2004.
- I. L. Rasskazov, N. Spegazzini, P. S. Carney, and R. Bhargava, "Dielectric sphere clusters as a model to understand infrared spectroscopic imaging data recorded from complex samples," Analytical chemistry, Vol. 89, No. 20, pp. 10813-10818, 2017.
- J. Huang, L. He, J. Wang, J. Xu, and L. Yuan, "Near-infrared hemicyanine fluorophores with optically tunable groups: A 'leap forward' for in vivo sensing and imaging," Synlett, 2023.
- A. Mase, Y. Kogi, D. Kuwahara, Y. Nagayama, N. Ito, T. Maruyama, H. Ikezi, X. Wang, M. Inutake, T. Tokuzawa, et al., "Development and application of radar reflectometer using micro to infrared waves," Advances in physics: X, Vol. 3, No. 1, p. 1472529, 2018.
- A. N. Sexton, "Regulation and Recruitment of Human Telomerase," Ph. D. Dissertation, UC Berkeley, 2014.
- Thermo analytics, "EO/IR signature simulation software," www.thermoanalytics.com, 2024.
- Pregagis, "Vega prime: Comprehensive visualization toolkit," www.presagis.com/en/product/vega-prime/, 2024.
- Oktal, "OKTAL-SE synthetic enviroment simulator," https://www.oktal-se.fr/, 2024.
- I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, "Generative adversarial networks. arxiv 2014," arXiv preprint arXiv:1406.2661, Vol. 10, 2014.
- J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, "Unpaired image-to-image translation using cycle-consistent adversarial networks," Proceedings of the IEEE international conference on computer vision, pp. 2223-2232, 2017.
- T. Kim and H. Bang, "Fractal texture enhancement of simulated infrared images using a cnn-based neural style transfer algorithm with a histogram matching technique," Sensors, Vol. 23, No. 1, p. 422, 2022.
- R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, "Grad-cam: Visual explanations from deep networks via gradient-based localization," Proceedings of the IEEE international conference on computer vision, pp. 618-626, 2017.
- P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, "Image-to-image translation with conditional adversarial networks," Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1125-1134, 2017.
- A. Chattopadhay, A. Sarkar, P. Howlader, and V. N. Bala- subramanian, "Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks," 2018 IEEE winter conference on applications of computer vision (WACV), pp. 839-847, IEEE, 2018.
- M. G. Core, H. C. Lane, M. Van Lent, D. Gomboc, S. Solomon, M. Rosenberg, "Building Explainable Artificial Intelligence systems," AAAI, pp. 1766-1773, 2006.
- M. Van Lent, W. Fisher, M. Mancuso, "An Explainable Artificial Intelligence system for small-unit tactical behavior," Proceedings of the National Conference on Artificial Intelligence, pp. 900-907, 2004.
- G. Alicioglu, B. Sun, "A survey of visual analytics for Explainable Artificial Intelligence methods," Computers & Graphics, Vol. 102, pp. 502-520, 2022.
- S. Mohseni, N. Zarei, E. D. Ragan, "A multidisciplinary survey and framework for design and evaluation of explainable AI systems," ACM Trans. Interact. Intell. Syst.(TiiS), 11(3-4), pp. 1-45, 2021.
- S. Ali, T. Abuhmed, S. El-Sappagh, K. Muhammad, J. M. Alonso-Moral, R. Confalonieri, R., Guidotti, J. Del Ser, N. Diaz-Rodriguez, and F. Herrera, "Explainable Artificial Intelligence(XAI): What we know and what is left to attain Trustworthy Artificial Intelligence," Information Fusion, Vol. 99, p. 101805, 2023.