DOI QR코드

DOI QR Code

상용급 수소액화 플랜트 압축기 테스트베드의 HAZID/HAZOP 위험성평가에 관한 연구

Study on HAZID/HAZOP Risk Assessment of Compressor Test Bed for the Shape of Hydrogen Liquefaction Plant

  • 이성우 (한국기계연구원 LNG 극저온.기계기술 시험인증센터) ;
  • 김모세 (한국기계연구원 LNG 극저온.기계기술 시험인증센터) ;
  • 김동민 (한국기계연구원 LNG 극저온.기계기술 시험인증센터) ;
  • 변병창 (한국기계연구원 LNG 극저온.기계기술 시험인증센터) ;
  • 김기덕 (한국기계연구원 LNG 극저온.기계기술 시험인증센터) ;
  • 김정훈 (한국기계연구원 LNG 극저온.기계기술 시험인증센터) ;
  • 이상윤 (한국기계연구원 LNG 극저온.기계기술 시험인증센터) ;
  • 채효병 (경상국립대학교 기계시스템공학과) ;
  • 김진욱 (기초과학연구원) ;
  • 이근태 (한국기계연구원 LNG 극저온.기계기술 시험인증센터)
  • Seong-Woo Lee (Korea Institute of Machinery and Materials, LNG Cryogenic Technology) ;
  • Mo-Se Kim (Korea Institute of Machinery and Materials, LNG Cryogenic Technology) ;
  • Dong-Min Kim (Korea Institute of Machinery and Materials, LNG Cryogenic Technology) ;
  • Byeong-Chang Byeon (Korea Institute of Machinery and Materials, LNG Cryogenic Technology) ;
  • Gi-Dock Kim (Korea Institute of Machinery and Materials, LNG Cryogenic Technology) ;
  • Jung-Hun Kim (Korea Institute of Machinery and Materials, LNG Cryogenic Technology) ;
  • Sang-Yoon Lee (Korea Institute of Machinery and Materials, LNG Cryogenic Technology) ;
  • Hyo-Byung Chae (Dept. of Mecanical System Engineering, Gyeongsang national University) ;
  • Jin-Wook Kim (Institute for Basic Science) ;
  • Keun-Tae Lee (Korea Institute of Machinery and Materials, LNG Cryogenic Technology)
  • 투고 : 2024.07.23
  • 심사 : 2024.09.21
  • 발행 : 2024.09.30

초록

본 연구에서는 수소액화 플랜트에서 사용되는 주요 기기 중 하나인 압축기의 테스트베드를 구축하기 위한 위험 요소를 정량적으로 분석하기 위해 HAZID & HAZOP 기법을 사용하여 위험성평가를 수행하였다. HAZID를 기반으로 한 위험성 평가에서는 대표적인 위험 요인인 Natural events, Flammable hazards, High pressure 등 3가지를 포함하여 7가지 주요 위험 요소를 도출하였다. HAZOP을 기반으로 한 위험성 평가에서는 총 36개의 이탈을 전개하였으며 압축기 테스트베드의 위험성 평가 및 안전도 향상을 위한 조치계획이 필요한 위험 요소로 총 15개가 도출하였다. 도출한 주요 위험에 대한 안전성을 향상하기 위해 안전계장 기능, 경보 등 추가 안전장치 설치를 제안하였다.

In this study, a test bed for a compressor, one of the main devices used in a hydrogen liquefaction plant, was established, and a risk assessment was conducted using the HAZID & HAZOP technique to quantitatively analyze the risk factors of the compressor. The risk assessment based on HAZID derived seven major risk factors, including three representative risk factors: Natural events, Flammable hazards, and High pressure. The risk assessment based on HAZOP developed a total of 36 deviations, and a total of 15 risk factors were derived as risk factors that require risk assessment and safety improvement measures for the compressor test bed. In order to improve safety for the major risks identified, the installation of additional safety devices such as safety instrumentation and alarms was proposed.

키워드

과제정보

본 연구는 2022년도 기획재정부(국토교통부)의 재원으로 국토교통과학기술진흥원의 지원을 받아 수행된 연구(RS-2022-00155807, 상용급 액체수소 플랜트용 압축기 핵심기술 개발 및 실증)이며 지원에 감사를 드립니다.

참고문헌

  1. S. Z. S. Al Ghafri, S. Munro, U. Cardella, T. Funke, W. Notar-donato, J. P. M. Trusler, J. Leachman, R. Span, S. Kamiya, G. Pearce, A. Swanger, E. D. Rodriguez, P. Bajada, F. Jiao, K. Peng, A. Siahvashi, M. L. Johns, and E. F. May, "Hydrogen liquefa-ction: a review of the fundamental physics, engineering pr-actice and future opportunities", Energy & Environmental Science, 15(7), 2690-2731, (2022)
  2. J. O'. M. Bockris, "The hydrogen economy: its history", Int-ernational Journal of Hydrogen Energy, 38(6), 2579-2588, (2013)
  3. S. Sharma and S. K. Ghoshal, "Hydrogen the future transp-ortation fuel: from production to applications", Renewable and Sustainable Energy Reviews, 43, 1151-1158, (2015)
  4. V. T. Giap, Y. D. Lee, Y. S. Kim, and K. Y. Ahn, "Technoeconomic analysis of reversible solid oxide fuel cell system couple with waste steam", Trans. of Korean Hydrogen and New Energy Society, 30(1), 21-28, (2019)
  5. J. W. Ahn, "The significance of long-term perception on renewable energy and climate change", Trans. of Korean Hydrogen and New Energy Society, 29(1), 117-123, (2018)
  6. B. Lee, H. Lee, C. Moon, S. Moon, and H. Lim, "Preliminary economic analysis for H2 transportation using liquid organic H2 carrier to enter H2 Economy Society in Korea", Trans. of Korean Hydrogen and New Energy Society, 30(2), 119-127, (2019)
  7. M. S. Sadaghiani and M. Mehrpooya, "Introducing and energy analysis of a novel cryogenic hydrogen liquefaction process configuration", Int. J. Hydrogen Energy, 42(9), 6033-6050, (2017)
  8. Y. E. Yukel, M. Ozturk, and I. Dincer, "Analysis and assessment of a novel hydrogen liquefaction process", Int. J.Hydrogen Energy, 42(16), 11429-11438, (2017)
  9. U. Cardella, L. Decker, J. Sundberg, and H. Klein, "Process optimization for large-scale hydrogen liquefaction", Int. J. Hydrogen Energy, 42(17), 12339-12354, (2017)
  10. M. S. Wu and C. J. Lee "A Study for Key Points of PSM to Guarantee the Safety of Liqufied Hydrogen Storage Tank" Korean Chemical Engineering Research, 61(1), 74-79, (2023)
  11. R.E. Melchers, "On the ALARP approach to risk management", Reliability Engineering & System Safety, 71(2), 201-208, (2001).
  12. D.N. Tchiehe and F. Gauthier, "Classification of risk acceptability and risk tolerability factors in occupational health and safety", Safety Science, 92, 138-147, (2017).