DOI QR코드

DOI QR Code

Development of Vacuum Leak Detection Technology for Liquid Hydrogen Storage Containers using Helium Leak Detector

헬륨 리크 디텍터를 활용한 액체 수소 저장 용기의 진공 누출 감지 기술 개발

  • Young Min Seo (Hydrogen Electric Research Team, Electric Mobility Research Division, Korea Electrotechnology Research Institute) ;
  • Hyun Woo Noh (Hydrogen Electric Research Team, Electric Mobility Research Division, Korea Electrotechnology Research Institute) ;
  • Tae Hyung Koo (Hydrogen Electric Research Team, Electric Mobility Research Division, Korea Electrotechnology Research Institute) ;
  • Rock Kil Ko (Hydrogen Electric Research Team, Electric Mobility Research Division, Korea Electrotechnology Research Institute) ;
  • Dong Woo Ha (Hydrogen Electric Research Team, Electric Mobility Research Division, Korea Electrotechnology Research Institute)
  • 서영민 (한국전기연구원 전기모빌리티연구단 수소전기연구팀) ;
  • 노현우 (한국전기연구원 전기모빌리티연구단 수소전기연구팀) ;
  • 구태형 (한국전기연구원 전기모빌리티연구단 수소전기연구팀) ;
  • 고락길 (한국전기연구원 전기모빌리티연구단 수소전기연구팀) ;
  • 하동우 (한국전기연구원 전기모빌리티연구단 수소전기연구팀)
  • Received : 2024.06.03
  • Accepted : 2024.06.25
  • Published : 2024.09.30

Abstract

In this study, various technologies were analyzed to suppress the occurrence of leak due to the difference in heat shrinkage of vacuum container parts. Based on these technologies, a study was conducted on the development of vacuum leakage detection technology for cryogenic containers using helium leak detectors. In addition, a study on vacuum leakage detection using a helium leak detector was conducted to accurately detect the site where a cryogenic container leak occurs. Finally, a vacuum leak detection procedure was established based on the leak detection experiment for the cryogenic container in which the actual leak occurred using a helium leak detector, and it was confirmed that various tests can be conducted depending on the test subject conditions.

본 연구에서는 진공용기 부품의 열수축률 차이로 인한 리크 발생을 억제하기 위한 다양한 기술을 분석하였다. 이러한 기술을 바탕으로 헬륨 누출 감지기를 이용한 극저온 용기의 진공 누출 감지 기술 개발에 관한 연구가 진행되었다. 또한 극저온 용기 누출이 발생하는 부위를 정확하게 검출하기 위해 헬륨 누출 감지기를 이용한 진공 누출 감지에 대한 연구를 진행하였다. 최종적으로 헬륨 누출 감지기를 이용하여 실제 누출이 발생한 극저온 용기에 대한 누출 감지 실험을 바탕으로 진공 누출 감지 절차를 수립하였으며, 실험 조건에 따라 다양한 테스트가 가능함을 확인하였다.

Keywords

Acknowledgement

이 연구는 2024년도 정부(과학기술정보통신부)의 재원으로 국가과학기술연구회의 지원을 받아 수행된 한국전기연구원 기본 사업임(No. 24A01070). 이 논문은 2024년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구임(24A02058, 액화수소 저장탱크/압력용기류의 진공·단열 성능평가 기술/안전기준 개발).

References

  1. Sheen, S., Chien, H., and Raptis, A. C., "Ultrasonic techniques for detecting helium leaks", Sensors and Actuators B, 71, 197-202, (2000)
  2. Acees, S. M., Expinosa-Loze, F., Petitpas, G., Ross, T. O., and Switzer, V. A., "Hydrogen safety training for laboratory researchers and technical personnel", International Journal of Hydrogen Energy, 37, 17497-17501, (2012)
  3. Wang, P., Ji, L., Yuan, J. , An, Z., Yan, K., and Zhang, J., "The influence of inner material with different average thermal conductivity on the performance of whole insulation system for liquid hydrogen on orbit storage", International Journal of Hydrogen Energy, 46, 10913-10923, (2021)
  4. Kim, I., and Jung, Y., "The experimental study of insulation structure for BOG Re-liquefaction drum", Journal of the Korea Institute of Gas, 25(1), 7-13, (2021)
  5. Jung, I., Kim, N., and Yun, S., "Thermal analysis on the LNG storage tank of LNG bunkering system applied with double shield insulation method", Journal of the Korea Institute of Gas, 22(4), 1-6, (2018)
  6. Cho, S., Sim, M., Jung, Y., and Kim, I., "A study on thermal performance evaluation procedures of LNG fuel tank", Journal of the Korea Institute of Gas, 22(3), 45-52, (2018)
  7. Kwon, H., and Hwang, I., "Design and optimization of vibration-resistant and heat-insulating support structure of fuel cylinder for LNG vehicles", Journal of the Korea Institute of Gas, 18(5), 6-11, (2014)
  8. Han, J., and Lee, Y., "Study on adiabatic performance of LNG storage tank for vehicles", Journal of the Korea Institute of Gas, 12(1), 31-35, (2008)
  9. Hidalgo, J. M., and de Segovia, J. L., "Laek calibration by comparison with reference standard leaks", Vacuum, 82, 1151-1153, (2008)
  10. Yoshida, H., Arai, K., Hirata, M., and Akimichi, H., "New leak element using sintered stainless steel filter for in-situ calibration of inization gauges and quadrupole mass spectrometers", Vacuum, 86, 838-842, (2012)
  11. Dong, D., Wei, W., Yang, D., and Wang, X., "Helium gas permeability measurements of polymeric membranes using the difference method", Vacuum, 121, 173-176, (2015)
  12. Zhao, Y., Cheng, Y., Zhang, Q., Wei, W., Qiu, K., Sun, L., Li, D., and Wang, X., "New leak element using anodic aluminum oxide", Journal of Hydrogen and New Energy, 131, 111-114, (2016)
  13. Meng, D., Sun, L., Yan, R., Shao, R., Yu, X., Li, X., Zhang, H., and Zhao, Y., "Effects of cryopump on vacuum helium leak detection system", Vacuum, 143, 316-319, (2017)
  14. Leng, Z., Chen, J., Wang, K., Wang, P., and Xu, M., "Hot helium leak test of ITER blanket shield block", Fusion Engineering and Design, 153, 111498, (2020)
  15. Leng, Z., Chen, J., Wang, K., Xu, M., Wang, K., Chen, X., Luo, W., Fang, R., and Wang, P., "Research on improving the system sensitivity for hot helium leak test", Fusion Engineering and Design, 188, 113422, (2023)
  16. Ha, D. W., Noh, H. W., Seo, Y. M., Koo, T. H., and Ko, R. K., "Development of a condensing-type hydrogen liquefaction system for improving cooling efficiency and long-term storage", International Journal of Hydrogen Energy, 49, 1558-1571, (2024)