Acknowledgement
This study was supported by research fund of Korea Military Academy(Future Strategy and Technology Research Institute). (RN: 24-AI-Center-03).
References
- Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, "A Comprehensive Survey on Graph Neural Networks," IEEE Trans. Neural Netw. Learn. Syst., Vol. 32, No. 1, pp. 4-24, Jan. 2021. DOI: 10.1109/TNNLS.2020.2978386
- J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun, "Graph Neural Networks: A Review of Methods and Applications," AI Open, Vol. 1, pp. 57-81, Dec 2020. DOI: 10.1016/j.aiopen.2021.01.001
- C. Gao, Y. Zheng, N. Li, Y. Li, Y. Qin, J. Piao, Y. Quan, J. Chang, D. Jin, X. He, and Y. Li, "A Survey of Graph Neural Networks for Recommender Systems: Challenges, Methods, and Directions," ACM Tors, Vol. 1, No. 1, pp. 1-51, Mar 2023. DOI: 10.1145/3568022
- C. Bodnar, "Topological Deep Learning," Ph.D. dissertation, University of Cambridge,
- M. Papillon, S. Sanborn, M. Hajij, and N. Miolane, "Architectures of Topological Deep Learning: A Survey of Message-Passing Topological Neural Networks," arXiv https://doi.org/10.48550/arXiv.2304.10031, 2024.
- L.-H. Lim, "Hodge Laplacians on Graphs," SIAM Review, Vol. 62, No. 3, pp. 685-715. Aug 2020. DOI: 10.1137/18M1223101
- M. T. Schaub, A. R. Benson, P. Horn, G. Lippner, and A. Jadbabaie, "Random Walks on Simplicial Complexes and The Normalized Hodge 1-Laplacian," SIAM Review, Vol. 62, No.2, pp. 353-391, May 2020. DOI: 10.1137/18M1201019
- Y. Chen, Y. R. Gel, and H. V. Poor, "BScNets: block simplicial complex neural networks," Proceedings of the 36th AAAI Conference on Artificial Intelligence, pp. 6333-6341, virtual, 2022. DOI: 10.48550/arXiv.2112.06826
- F. Battiston, G. Cencetti, I. Iacopini, V. Latora, M. Lucas, A. Patania, J.-G. Young, and G. Petri, "Networks Beyond Pairwise Interactions: Structure and Dynamics," Physics Reports, Vol. 874, pp. 1-92, Aug 2020. DOI: 10.1016/j.physrep.2020.05.004
- T. M. Roddenberry, N. Glaze, and S. Segarra, "Principled simplicial neural networks for trajectory prediction," Proceedings of the International Conference on Machine Learning. pp. 9020-9029, virtual, 2021. DOI: 10.48550/arXiv.2102.10058
- C. Bodnar, F. Frasca, Y. G. Wang, N. Otter, G. Montufar, P. Lio, and M. Bronstein, "Weisfeiler and Lehman go topological: message passing simplicial networks," Proceedings of International Conference on Machine Learning, pp. 1026-1037, virtual, 2021. DOI: 10.48550/arXiv.2103.03212
- C. Morris, N. M. Kriege, F. Bause, K. Kersting, P. Mutzel, and M. Neumann, "TUDataset: A collection of benchmark datasets for learning with graphs," Proceedings of International Conference on Machine Learning 2020 workshop "Graph Representation Learning and Beyond", virtual, 2020. DOI: 10.48550/arXiv.2007.08663
- R. Eletreby, Y. Zhuang, K. M. Carley, O. Yagan and H. V. Poor, "The Effects of Evolutionary Adaptations on Spreading Processes in Complex Networks," Proc. Natl. Acad. Sci. U.S.A., Vol. 117, No. 11, pp. 5664-5670, Jan 2020. DOI: 10.1073/pnas.1918529117
- M. Salathe, M. Kazandjieva, J. W. Lee, P. Levis, M. W. Feldman, and J. H. Jones, "A High-Resolution Human Contact Network for Infectious Disease Transmission," Proc. Natl. Acad. Sci. U.S.A., Vol. 107, pp. 22020-22025, Nov 2010. DOI: 10.1073/pnas.1009094108
- M. Yang, E. Isufi, M. T. Schaub, and G. Leus, "Simplicial Convolutional Filters," IEEE Trans. Signal Process., Vol. 70, pp. 4633-4648, Sep 2022. DOI: 10.1109/TSP.2022.3207045
- C. W. J. Goh, C. Bodnar, and P. Lio, "Simplicial attention networks," Proceedings of the ICLR 2022 Workshop on Geometrical and Topological Representation Learning, virtual, 2022. DOI: 10.48550/arXiv.2204.09455
- J. Yang and J. Leskovec. "Defining and Evaluating Network Communities based on Ground-Truth," Knowl. Inf. Syst. Vol. 42, pp. 181-213 Jan 2015. DOI: 10.1007/s10115-013-0693-z
- R. Yang, F. Sala, P. Bogdan, "Efficient representation learning for higher-order data with simplicial complexes," Proceedings of the First Learning on Graphs Conference, pp. 13:1-13:21, virtual, 2022. DOI: 10.48550/arXiv.2103.04046
- M. Yang and E. Isufi, "Convolutional Learning on Simplicial Complexes," arXiv preprint https://doi.org/10.48550/arXiv.2301.11163 2023.
- H. Madhu and S. P. Chepuri, "TopoSRL: topology preserving self-supervised simplicial representation learning," Advances in Neural Information Processing Systems 36, pp. 64306-64317, New Orleans, U.S.A. 2023.
- M. Hajij, K. Istvan, and G. Zamzmi, "Cell complex neural networks," Proceedings of NeurIPS 2020 Workshop Topological Data Analysis and Beyond, virtual, 2020. DOI: 10.48550/arXiv.2010.00743
- L. Giusti, C. Battiloro, L. Testa, P. Di Lorenzo, S. Sardellitti and S. Barbarossa, "Cell attention networks," Proceedings of International Joint Conference on Neural Networks, pp. 1-8, Queensland, Australia, 2023. DOI: 10.1109/IJCNN54540.2023.10191530
- P. D. Dobson and A. J. Doig, "Distinguishing Enzyme Structures from Non-Enzymes without Alignments," J. Mol. Biol. Vol. 330, No. 4. pp. 771-783, July 2003. DOI: 10.1016/S0022-2836(03)00628-4
- C. Battiloro, I. Spinelli, L. Telyatnikov, M. Bronstein, S. Scardapane, and P. Di Lorenzo, "From latent graph to latent topology inference: differentiable cell complex module," Proceedings of International Conference on Learning Representation, Vienna Austria, 2024. DOI: 10.48550/arXiv.2305.16174
- B. Peters, V. Niculae, and A. F. T. Martins, "Sparse sequence-to-sequence models," Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 1504-1519, Florence, Italy, 2019. DOI: 10.48550/arXiv.1905.05702
- I. Chami, R. Ying, C. Re', and J. Leskovec, "Hyperbolic graph convolutional neural networks," Advances in Neural Information Processing Systems 32, pp. 4868-4879, Vancouver, Canada, 2019. DOI: 10.48550/arXiv.1910.12933
- C. L. Giles, K. D. Bollacker, S. Lawrence "CiteSeer: an automatic citation indexing system," Proceedings of the third ACM conference on Digital libraries, pp. 89-98, Pittsburgh, PA, U.S.A. 19998. DOI: 10.1145/276675.276685
- M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst, "Geometric Deep Learning: Going Beyond Euclidean Data," IEEE Sig. Proc. Mag., Vol. 34, No. 4, pp. 18-42, Jul 2017. DOI: 10.1109/MSP.2017.2693418
- D. Lazer et al., "Life in The Network: The Coming Age of Computational Social Science," Science, Vol. 323, No. 5915, pp. 721-723, Feb 2009. DOI: 10.1126/science.1167742
- R. Lambiotte, M. Rosvall and I. Scholtes, "From Networks to Optimal Higher-order Models of Complex Systems," Nature Physics, Vol. 15, pp. 313-320, Mar 2019. DOI: 10.1038/s41567-019-0459-y
- J. Hoppe and M. T. Schaub, "Representing edge flows on graphs via sparse cell complexes," Proceedings of the Second Learning on Graphs Conference, pp. 1:1-1:22, virtual, 2023. DOI: 10.48550/arXiv.2309.01632
- N. Malod-Dognin and N. Przulj, "Functional Geometry of Protein Interactomes," Bioinformatics, Vol. 35, No. 19, pp. 3727-3734, Mar 2019. DOI: 10.1093/bioinformatics/btz146