Acknowledgement
본 논문은 농촌진흥청 연구사업(과제번호: RS-2022-RD010352(PJ0170742022))의 지원에 의해 이루어진 것임.
References
- J. Zha, "Artificial Intelligence in Agriculture," Journal of Physics: Conference Series, Vol. 1693, 012058, 2020. https://doi.org/10.1088/1742-6596/1693/1/012058
- E. Elbasi, N. Mostafa, Z. AlArnaout, A. I. Zreikat, E. Cina, G. Varghese, A. Shdefat, A. E. Topcu, W. Abdelbaki, S.Mathew, and C. Zaki, "Artificial Intelligence Technology in the Agricultural Sector: A Systematic Literature Review," IEEE Access, Vol. 11, pp.171-202, 2023. https://doi.org/10.1109/ACCESS.2022.3232485
- V. Meshram, K. Patil, V.Meshram, D. Hanchate, and S. D. Ramkteke, "Machine learning in agriculture domain: A state-of-art survey," Artificial Intelligence in the Life Sciences, Vol. 1, 2021. https://doi.org/10.1016/j.ailsci.2021.100010.
- https://github. com/onnx/onnx, 2023.11.27.
- J. Um, M. Hwang and Youngho Shin, "A Study on Development of Artificial Intelligence Big Data Storing and Sharing System in Agricultural Science," Korea Contents Association General Conference Proceedings, pp.175-176, 2022.
- J. Um, Mi. Hwang, Y. Shin, J. Kim, S. Kim, Y. Jo, and H. S. Cheong, "Design and Implementation of Platform for Managing Artificial Intelligent Training DataSet in Agriculture and LiveStock," 2023 KSII FALL Conference, Vol. 24, No 2, pp.351-352, 2023.
- https://www.rdaidata.kr/, 2023.11.27.
- M. Morales-Hernandez, M. B. Sharif, A. Kalyanapu, S. K. Ghafoor, T. T. Dullo, S. Gangrade, S. Kao, M.R. Norman, and K. J. Evans, "TRITON: A Multi-GPU open source 2D hydrodynamic flood model," Environmental Modelling & Software, Vol. 141, 2021. https://doi.org/10.1016/j.envsoft.2021.105034
- https://github.com/awslabs/multi-model-server, 2023.11.27.
- K. He, X. Zhang, S. Ren and J. Sun, "Deep residual learning for image recognition," IEEE Conference on Computer Vision and Pattern Recognition, pp.770-778, 2016. https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
- K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," CoRR abs/1409.1556, http://arxiv.org/abs/1409.1556, 2014.
- G. Huang, Z. Liu, L. Van Der Maaten and K. Q. Weinberger, "Densely connected convolutional networks," IEEE conference on computer vision and pattern recognition, pp.4700-4708, 2017.
- F. Chollet, "Xception: Deep learning with depthwise separable convolutions," IEEE conference on computer vision and pattern recognition, pp.1251-1258, 2017. https://openaccess.thecvf.com/content_cvpr_2017/html/Chollet_Xception_Deep_Learning_CVPR_2017_paper.html
- K. He, G. Gkioxari, P. Dollar, and R. Girshick, " Mask r-cnn," IEEE international conference on computer vision, pp.2961-2969, 2017. https://openaccess.thecvf.com/content_iccv_2017/html/He_Mask_R-CNN_ICCV_2017_paper.html
- J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You only look once: Unified, real-time object detection," IEEE Conference on Computer Vision and Pattern Recognition, pp.779-788, 2016. https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Redmon_You_Only_Look_CVPR_2016_paper.html
- S. Vosoughi, P. Vijayaraghavan and D. Roy " Tweet2Vec: learning Tweet embeddings using character-level CNN-LSTM encoder-decoder," The 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp.1041-1044, 2016. https://doi.org/10.1145/2911451.2914762
- S. Qiao, L. C. Chen and A. Yuille, "Detectors: Detecting objects with recursive feature pyramid and switchable atrous convolution," IEEE/CVF conference on computer vision and pattern recognition, pp.10213-10224, 2021. https://openaccess.thecvf.com/content/CVPR2021/html/Qiao_DetectoRS_Detecting_Objects_With_Recursive_Feature _Pyramid_and_Switchable_Atrous_CVPR_2021_paper.html
- H. Duan, Y. Zhao, K. Chen, D. Lin and B. Dai, "Revisiting skeleton-based action recognition," IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.2969-2978, 2022. https://openaccess.thecvf.com/content/CVPR2022/html/Duan_Revisiting_Skeleton-Based_Action_Recognition_CVPR_2022_paper.html
- C. Yu, B. Xiao, C. Gao, L. Yuan, L. Zhang, N. Sang, and J. Wang, "Lite-hrnet: A lightweight high-resolution network," IEEE/CVF conference on computer vision and pattern recognition, pp.10440-10450, 2021.
- A. Karpathy, , G. Toderici, , S. Shetty, T. Leung, R. Sukthankar and L. Fei-Fei, "Largescale video classification with convolutional neural networks," IEEE Conference on Computer Vision and Pattern Recognition, pp.1725-1732, 2014. https://www.cv-foundation.org/openaccess/content_cvpr_ 2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
- X. Li and X. Wu, "Constructing long short-term memory based deep recurrent neural networks for large vocabulary speech recognition," IEEE International Conference on Acoustics, Speech and Signal Processing, pp.4520-4524, 2015. https://doi.org/10.1109/ICASSP.2015.7178826
- https://github.com/ultralytics/yolov5, 2023.11.27.
- Bochkovskiy, Alexey, Chien-Yao Wang, and Hong-Yuan Mark Liao, "Yolov4: Optimal speed and accuracy of object detection," arXiv preprint arXiv:2004.10934, 2020. https://doi.org/10.48550/arXiv.2004.10934
- P. Adarsh, P. Rathi and M. Kumar, "YOLO v3-Tiny: Object Detection and Recognition using one stage improved model," 6th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, pp.687-694, 2020. https://doi.org/10.1109/ICACCS48705.2020.9074315
- https://www.aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=data&dataSetSn=153, 2023.11.27.
- C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, "Rethinking the Inception Architecture for Computer Vision," IEEE conference on computer vision and pattern recognition, pp. 2818-2826, 2016. https://www.cv-foundation.org/openaccess/content_cvpr_ 2016/html/Szegedy_Rethinking_the_Inception_CVPR_2 016_paper.html
- https://https://dataon.kisti.re.kr/canvas/intro.do,2024.08.09.