참고문헌
- BAntuono, M. (2020). Tri-periodic fully three-dimensional analytic solutions for the Navier-Stokes equations. Journal of Fluid Mechanics, 890, A23. https://doi.org/10.1017/jfm.2020.126
- Chaplin, J. R. (1980). Developments of stream-function wave theory. Coastal Engineering, 3, 179-205. https://doi.org/10.1016/0378-3839(79)90020-6
- Chappelear, J. E. (1961). Direct numerical calculation of wave properties. Journal of Geophysical Research, 66(2), 501-508. https://doi.org/10.1029/JZ066i002p00501
- Chen, H., & Zou, Q. (2019). Effects of following and opposing vertical current shear on nonlinear wave interactions. Applied Ocean Research, 89, 23-35. https://doi.org/10.1016/j.apor.2019.04.001
- Chorin, A. J. (1968). Numerical solution of the Navier-Stokes equations. Mathematics of Computation, 22, 745-762.
- Dym, C. L. & Shames, I. H. (1973). Solid Mechanics: A variational approach. McGRAW-Hill.
- Constantin, A. (2005). A Hamiltonian formulation for free surface water waves with non-vanishing vorticity. Journal of Nonlinear Mathematical Physics, 12(1), 202-211. https://doi.org/10.2991/jnmp.2005.12.s1.17
- Dalrymple, R. A. (1974). A finite amplitude wave on a linear shear current. Journal of Geophysical Research 79(30), 4498-4504. https://doi.org/10.1029/JC079i030p04498
- De, S. C. (1955). Contributions to the theory of Stokes waves. Proceedings of the Cambridge Philosophical Society, 51(4), 713-736.
- Dean, R. G. (1965). Stream function representation of nonlinear ocean waves. Journal of Geophysical Research, 70(18), 4561-4572. https://doi.org/10.1029/JZ070i018p04561
- Dean, R.G., & Dalrymple, R.A. (1984). Water wave mechanics for engineers and scientists. Prentice-Hall, Inc.
- Ethier, C. R., Steinman, D. A. (1994). Exact fully 3D Navier-Stokes solutions for benchmarking. International Journal for Numerical Methods in Fluids, 19 (5): 369-375. https://doi.org/10.1002/fld.1650190502
- Henry, D. (2008). On Gerstner's water wave. Journal of Nonlinear Mathematical Physics, 15(2), 87-95. https://doi.org/10.2991/jnmp.2008.15.s2.7
- Fenton, J. D. (1988). The numerical solution of steady water wave problems. Computers and Geosciences, 14(3), 357-368. https://doi.org/10.1016/0098-3004(88)90066-0
- Kim, J., & Moin, P. (1985). Application of a fractional-step method to incompressible Navier-Stokes equations. Journal of computational physics, 59(2), 308-323. https://doi.org/10.1016/0021-9991(85)90148-2
- Kishida, N., & Sobey, R.J. (1988). Stokes theory for waves on a linear shear current. Journal of engineering mechanics, 114(8), 1317-1334. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:8(1317
- Korteweg, D. J., & de Vries, G. (1895), XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 39(240), 422-443. https://doi.org/10.1080/1478644950862073
- Le Mehaute, B, Divoky, D, & Lin, A (1968). Shallow Water Waves: A Comparison of Theories and Experiments. Proceedings of 11th Conference of Coastal Engineeing, London, UK (pp. 86-107). https://doi.org/10.1061/9780872620131.00
- Lin, T.-C. (1988). Smoothness results of single and double layer solutions of the Helmholtz equations. Journal of Integral Equations and Applications, 1(1), 83-121. https://www.jstor.org/stable/26162915
- Nwogu, O. (2009), Interaction of finite-amplitude waves with vertically sheared current fields. Journal of fluid mechanics. 627, 179-213. https://doi.org/10.1017/S0022112009005850
- Rankine, W. J. M. (1863). VI. On the exact form of waves near the surface of deep water. Philosophical Transactions of Royal of London 153, 127-138. https://doi.org/10.1098/rstl.1863.0006
- Rienecker, M. M., & Fenton, J. D. (1981). A Fourier approximation method for steady water waves. Journal of Fluid Mechanics, 104(1), 119-137.
- Shiau, J. C., & Rummer Jr, R. R. (1974). Decay of mass oscillations in rectangular basins. Journal of the Hydraulics Division, 100(1), 119-136. https://doi.org/10.1061/JYCEAJ.000384
- Shin, J. (2016). Analytical approximation in deep water waves. Journal of Advanced Research in Ocean Engineering, 2(1), 1-11. https://doi.org/10.5574/JAROE.2016.2.1.001
- Shin, J. (2019). A regression analysis result for water waves on irrotational flow over a horizontal bed. International Journal of Offshore and Polar Engineering, 29(4), 461-466. https://doi.org/10.17736/ijope.2019.hc17
- Shin, J. (2022). Solution for water waves with a shear current and vorticity over a flat bed. International Journal of Offshore and Polar Engineering, 32(4), 418-423. https://doi.org/10.17736/ijope.2022.hc29
- Shin, J. (2023). Numerical method for calculating fourier coefficients and properties of water waves with shear current and vorticity in finite depth. Journal of Ocean Eng Technol, 37(6), 256-265. https://doi.org/10.26748/KSOE.2023.034
- Stokes, G. G. (1847). On the theory of oscillatory waves. Transactions of the Cambridge Philosophical Society, 8, 441-473.
- Stokes, G. G. (1880). Stokes, G.G. (2009). Mathematical and Physical Papers vol.1: Supplement to a paper on the theory of oscillatory waves (pp. 314-326). Cambridge University Press. https://doi.org/10.1017/CBO9780511702242.016
- Skjelbreia, L., & Hendrickson, J. (1960). Fifth order gravity wave theory. Coastal Engineering Proceedings, 1(7), 10. https://doi.org/10.9753/icce.v7.10
- Taylor, G. I., & Green, A. E. (1937). Mechanism of the production of small eddies from large ones. Proceedings of the Royal Society A -Mathematical and Physical Sciences, 158(895), 499-521. https://doi.org/10.1098/rspa.1937.0036
- Vanden-Broeck, J. M., & Schwarts, L. W. (1979). Numerical computation of steep gravity waves in shallow water. Physics of Fluids 22(10), 1868-1871. https://doi.org/10.1063/1.862492
- Wang, C. Y. (1991). Exact solutions of the steady-state Navier-Stokes equations. Annual Review of Fluid Mechanics, 23: 159-177. https://doi.org/10.1146/annurev.fl.23.010191.001111