
1. Introduction

Water waves are considered one of the most fascinating natural 
phenomena in the marine environment. Waves in the open ocean are 
generally generated by winds. The transmission of energy from the wind 
to the water is facilitated by friction between these two fluid media. This 
energy is transmitted as a wave across the water surface. Consequently, 
friction plays a pivotal role in the circulation of fluids and is a crucial 
factor in wave generation. The energy transferred from the wind to waves 
diminishes as the wind intensity decreases, leading to the transformation 
of waves into swells that eventually dissipate. Therefore, friction also 
contributes to the dissipation of waves. Nevertheless, the mathematical 
description of water waves has been conducted under the assumption of 
irrotational, inviscid flow (Chaplin, 1980; Chappeleakimr, 1961; De, 
1955; Dean, 1965; Fenton, 1988; Kishida and Sobey, 1988; Korteweg 
and de Vries, 1895; Rienecker and Fenton, 1981; Shin, 2016, 2019; 
Stokes, 1847; Stoke, 1880; Skjelbreia and Hendrickson, 1960; 
Vanden-Broeck and Schwartz., 1979) or under the assumption of 
rotational, inviscid flow (Rankine, 1863; Chen and Zou, 2019; 
Constantin, 2005; Dalrymple, 1974; Henry; 2008; Nwogu, 2009; Shin, 
2022, 2023). Hence, these studies cannot account for the natural 
dissipation of waves. In a few exceptional cases, viscosity is considered 
in the linearized Navier-Stokes equations, e.g., water waves over a 

viscous mud bottom and seiche phenomena in coastal regions. The 
equation (Dean and Dalrymple, 1984) for long waves with bottom 
friction is analogous to that of a damped harmonic oscillator. The 
amplitude decreases exponentially with time, and the angular frequency 
also changes, providing an important clue for solving the Navier–Stokes 
(NS) equations. NS equations are a set of nonlinear partial differential 
equations that govern the flow of Newtonian fluids. These equations are 
valuable because of their ability to elucidate numerous physical 
phenomena. The structural design process commences by evaluating the 
external appearance of the design object and the loads on the surface 
generated by fluid flow. The NS equations are used for these 
determinations. Despite the wide range of practical applications, the 
existence of smooth solutions in three dimensions has not been proven 
definitively. Theoretical solutions remain limited for most cases, with 
only a few exceptions. Analytical approaches are deemed almost 
impossible for solving these problems. Thus, only numerical and 
experimental methods are allowed. This study applied a theoretical 
approach with tensor calculus to address these limitations. General 
solutions were introduced without considering the boundary conditions 
and initial conditions.

NS equations are the Euler equations with the addition of the 
gradient of the viscous stress tensor. The viscous stress tensor is 
proportional to the strain rate, making the gradient of viscous stress a 
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linear function of the velocity field. The convective acceleration is the 
only nonlinear term included in the Euler equation. Shin (2022, 2023) 
reported the complete solutions to the Euler equations. They 
transformed the Euler equations into Bernoulli's principle when the 
velocity field was described by the solutions of the Helmholtz 
equation. Using the methodology used in the studies conducted by 
Shin (2022, 2023) with the solution for a damped harmonic oscillator, 
the findings were extended to cover general three-dimensional viscous 
flow in the current study.

When the velocity field is described by solutions of the Helmholtz 
equation, the gradient of the viscous stress tensor for incompressible 
flow is proportional to the velocity field. The product of a solution to 
the Helmholtz equation and any time function is also a solution to the 
Helmholtz equation. By substituting the product into the NS equations, 
these equations can be decomposed into the Euler equations and a 
linear ordinary differential equation for the time function. Based on 
Shin's (2022) research, this study solved the Euler equations for 
general flow. Some exact solutions to NS equations exist. The Taylor–
Green vortex (Taylor and Green, 1937) and Antonio's solution 
(Antuono, 2020) are two interesting examples. The Taylor–Green 
vortex was an unsteady flow of a decaying vortex in Cartesian 
coordinates. Antonio's solution is considered a three-dimensional 
generalization of the classic two-dimensional Taylor–Green vortex. 
For verification, the Taylor–Green vortex and Antonio's solutions are 
special cases of the solutions presented in this study. Substituting the 
results into the vorticity equations confirmed that the vorticity 
equations were satisfied.

This study adjusted Shin's results (2022, 2023) to comply with NS 
equations. The process through which waves evolve into swells was 
elucidated. The modified wave theory was verified by comparing the 
decay modulus with the experimental data of Shiau and Rumer (1974) 
and the theoretical solution presented by Dean and Dalrymple (1984). 
The comparison results showed a high level of agreement.

2. Navier-Stokes Equations for 
Incompressible Flow 

Tensor notation was used for simplicity, and the following rule was 
adopted when using tensor notation. Whenever the subscript appeared 
twice as a letter in a grouping, the expressions of this grouping were 
summed, with the repeated index taking on successively the values 1, 
2, and 3. The non-repeated letter subscripts or numerical subscripts 
remain fixed during the process (Dym and Shames, 1973). The partial 
derivatives of a tensor are denoted using commas and indices as 

    where   is the position vector; the conservation of mass is 

presented as follows:

   (1)

where   is the velocity field, which is a vector function of position,  , 

and time, . The conservation of momentum is presented as follows:

     (2)

A time derivative will be denoted with the ‘over-dot’ notation. 
Therefore,   is the local acceleration.  is the density of the fluid, 
which is a constant;   is pressure field;  is kinematic 
viscosity, which is a constant;   is body force per unit mass, which is 
a conservative force. The NS equations for an incompressible fluid are 
composed of Eqs. (1) and (2). The vorticity is defined as follows:

Ω≝ (3)

where   is the Levi–Civita symbol. Taking the inner product of the 
vorticity and the Levi-Civita symbol results in

   Ω (4)

Taking the inner product of the velocity   and the deformation 
tensor  , the convective acceleration in Eq. (2) is expressed as

   Ω (5)

Replacing p = j, q = i, and i = k, Eq. (5) can be presented as follows 
because Ω  Ω Ω :
   Ω (6)

Substituting Eq. (6) into Eq. (2), the alternative form of the 
momentum equation is represented as follows:

     Ω  (7)

Because   is a conservative force, it has potential energy. The first 
term on the right-hand side represents the outer product of the velocity 
and vorticity. Therefore, the term is zero when the vorticity and the 
velocity are parallel to each other. 

3. Decomposition of the Navier-Stokes Equations 

A definitive clue to solving the NS equations can be found in the 
solution of a single-degree-of-freedom damped harmonic oscillator or 
long waves with bottom friction (Dean and Dalrymple, 1984). In the 
oscillator, the damping force is proportional to the velocity  of the 
object because it is due to fluid viscosity: −, where  is the damping 
coefficient. Newton’s second law for a damped harmonic oscillator is 
presented as follows:

  (8)
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where is the undamped angular frequency of the oscillator, and  is 
the damping ratio. The displacement is expressed as

  sin　  (9)

where A is the amplitude,  is the phase, and    is the exponential 
decay of the amplitude. Eq. (9) indicates that the damping force 
reduces the natural frequency, decreases the amplitude, and eventually 
eliminates the oscillation. Considering that the gradient of viscous 
stress in Eq. (7) arises from a Newtonian fluid, similar to the oscillator, 
the solutions to the NS equations are presented in a similar form to Eq. 
(9). If the velocity field is a solution to the Helmholtz equation, i.e.,    , the gradient of viscous stress is presented as    , 
where  is a constant with the unit of inverse area. Therefore, like the 
damped harmonic oscillator, the gradient of viscous stress is 
proportional to the velocity field. Eq. (9) is based on the assumption 
that the velocity field for viscous flow is represented as follows:

≝  (10)

where  is a function of time, which is a dimensionless quantity, 
and   is a velocity field for inviscid flow to satisfy the Helmholtz 
equation. Examples of   include the water particle velocities 
presented by Shin (2022, 2023).

Theorem 1. When the velocity fields are represented as a product of 
a time function and solutions of the Helmholtz equation, the NS 
equations can be decomposed into the Euler equations and an ordinary 
equation for the time function.

Proof. Substituting Eq. (10) into Eq. (1), the conservation of mass is 
presented as follows:

   (11)

 The gradient of viscous stress is presented as     , and the local acceleration is presented as follows:

    (12)

Substituting Eq. (12) and     into Eq. (7), Eq. (7) is 
converted to the Euler momentum equation, provided that the 
following condition is satisfied:

   (13)

Because  ≠, the solution to Eq. (13) can be presented as follows:

  (14)

The constant, b, must be negative because the flow must eventually 

dissipate. Eq. (14) shows similarities to the exponential decay of the 
amplitude, as expressed in Eq. (9). Eq. (7) is presented as follows:

      Ω (15)

where the vorticity, Ω≝Ω . Therefore, Ω   . 
Theorem 2. When the velocity field is a solution of the Helmholtz 

equation, then the vorticity is also a solution of the Helmholtz 
equation.

Proof. Ω              Ω
As a result, the velocity field and the vorticity field were determined 

using the Helmholtz equation. The next step was to determine the 
pressure field using Eq. (15). “ ”, and it has no dimensions. 
Hence, it is considered a non-dimensional perturbation parameter. 
Using the perturbation method, Eq. (15) can be solved in the following 
chapters for two cases:   is steady flow and   is unsteady flow.

4. Pressure Field for Steady Flow 

When the velocity field,   is independent of time, Eq. (10) is 
presented as follows:

 (16)

Therefore, the local acceleration in Eq. (15) is zero. The pressure 
field is presented as the sum of the dynamic pressure and static 
pressure. The pressure field must be presented by a quadratic function 
with respect to  because the dynamic pressure is proportional to 
the square of the velocity, and static pressure is proportional to the 
body force, as follows. 

≝  (17)

The first and second terms mean the static and dynamic pressures, 
respectively. Substituting Eqs. (16)–(17) into Eq. (15), the result is 
presented as

   Ω    (18)

Eq. (18) is decomposed with two equations because Eq. (18) is valid 
for all , and ≠, using the perturbation method, as follows. The 
zero-order perturbation equation is presented as follows:

   (19)

The second-order perturbation equation is presented as

  Ω   (20)
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Integrating Eq. (19), the potential energy of the body force is 
determined as follows:

  (21)

The static pressure field is determined using Eq. (21).   is a solution 
of the Helmholtz equation. Hence,   . Therefore, the last term 
of Eq. (20) is presented as follows:

Ω   Ω (22)

Using Eq. (4), 

   Ω   Ω (23)

Using Eq. (11),   , and   Ω. Substituting it into Eq. (22), 

Ω   ΩΩ    ΩΩ (24)

  ΩΩ ΩΩ
Where  is the Kronecker delta. Since divergence of curl is zero, we 

have Ω  . Therefore, ΩΩ  ΩΩ  . Let’s introduce a 

quantity,  E≝ΩΩ  . Therefore, E∫ΩkΩik dxi is a type of 

kinetic energy. Because Ω  is also a solution of the Helmholtz 
equation and is determined by the velocity field, the energy, E can be 
easily determined. Substituting Eq. (24) into Eq. (20), the result is 
presented as follows.

    ΩΩ   (25)

Bernoulli’s principle can be expressed as Eq. (26) by integrating Eq. 
(25) with respect to  :
   ΩΩ  (26)

The dynamic pressure field is determined using Eq. (26). The 
second term represents the kinetic energy associated with irrotational 
motion. In contrast, the third term represents the kinetic energy related 
to the vortex. The total kinetic energy is the linear sum of the two 
terms because the constant, b is negative, which is consistent with the 
law of conservation of energy. The ratio, r, is defined as

≝ΩΩ
 (27)

ΩΩ ≥≥ because the kinetic energy is a positive-definite 
function and the constant, , is negative. Therefore ≤≤.

The energy E is referred to as an anti-vortex energy because it 
reduces the kinetic energy due to the vortex like frictional energy. Two 
cases of anti-vortex energy are considered as follows:

4.1 Anti-Vortex Energy Zero Case Ω  Ω   and Ω   for 2-dimensional flow. Hence, 

ΩΩ   (28) 

Therefore,    for two-dimensional flow. This condition is not 
generally valid in three-dimensional flow. Examples include the 
Beltrami flows considered in the next section. 

4.2 Beltrami Flow
Beltrami flows are flows in which the vorticity vector and the 

velocity vector are parallel to each other. The outer product of the 
velocity and the vorticity is zero, i.e., Ω  . Applying it to Eq. 

(24), ΩΩ  ΩΩ . Therefore,    for a Beltrami flow. In this 
case, Eq. (26) represents Bernoulli’s principle for irrotational flow, 
and Beltrami flow is like irrotational flow.

5. Pressure Field for Unsteady Flow 

When the velocity field,   is unsteady flow, the velocity field can 
be expressed as Eq. (10). A typical example is progressive water 
waves (Shin, 2022, 2023). Using the moving coordinate system 
proposed by Dean (1965), an unsteady flow can be converted into a 
steady flow, as presented in the previous Chapter. The moving 
coordinate system is defined as

≝  (29)

  has a length unit. In a damped harmonic oscillator, angular 
frequency is modified with a damping ratio, “,” as shown in Eq. (9). 
Therefore, the function   shows that viscosity also affects the 
angular frequency of water waves. The first term in Eq. (15) must be a 
quadratic term of , it is assumed that the function   is defined 
as 

≝ (30)

where  is the phase speed for water waves or a reference speed for 
other flow, which is a constant. The relative velocity with respect to 
the moving coordinate system is presented as

    (31)

   because   is a constant. Hence,

∂
∂   (32)
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Using Eqs. (29) and (30), 

  (33)

Using the coordinate system, the velocity field in Eq. (10) can be 
expressed as  (34)

The pressure field can be presented by a quadratic function with 
respect to  as follows: 

   (35)

where the velocity field   is a solution of the Helmholtz equation. 
Using Eqs. (29), (31), and (33), the local acceleration in Eq. (15) is 
presented as

∂∂ ∂
∂ ∂∂ ∂

∂ ∂
∂ (36)

The convective acceleration in Eq. (15) is presented as

∂
∂   ∂∂ (37)

Differentiating Eq. (35), the gradient of the pressure is presented as

∂∂ ∂∂ ∂∂ (38)

Substituting Eqs. (36)–(38) into Eq. (15), the result is expressed as 
follows:

    ΩΩ Ω
Ω     (39)

The zero-order perturbation equation is presented as the same in Eq. 
(19), and the second-order perturbation equation is presented as

 
  ΩΩ Ω

Ω   (40)

Because    , integrating the above equation with respect to 
  gives Bernoulli’s principle as follows:

   ΩΩ  (41)

The dynamic pressure field was determined using Eq. (41). 
Substituting Eq. (14) into Eq. (30) and integrating the result results in

    (42)

where  is an integral constant. For inviscid flow,   as 
proposed by Dean (1965); hence, there is a condition to determine the 
constant.

 →lim (43)

The integral constant is determined as

 (44)

6. Results and Verification

Some exact solutions to the NS equations exist for specific 
conditions (Antuono, 2020; Ethier and Steinman, 1994; Taylor and 
Green, 1937; Wang, 1991). For verification, the Taylor–Green vortex 
and Antonio's solution were proven to be specific cases of the general 
solutions presented in this study.

6.1 General Form of the Velocity Field
A function,    , where “” is a complex number in this 

section, satisfies that ”  . Therefore, the general solution 
to the Helmholtz equation is presented with a linear combination, i.e., 

                  , where  ,  , and   are 

complex numbers in this section, and      to satisfy 
   . The coefficients   are determined to satisfy Eq. (11), 
boundary conditions, and initial conditions. The vorticity is also 
presented with the same form. Three samples are presented in the 
following sections. 

6.2 Vorticity transport equation
Differencing Eq. (2) with respect to   and taking the inner product 

of the result and the Levi-Civita symbol,   with respect to the 
indices i and , the vorticity transport equation can be derived as 
follows.

Ω Ω Ω Ω (45)

The left-hand side is the material derivative of the vorticity vector. 
The first term on the right-hand side describes the stretching or turning 
of vorticity caused by the flow velocity gradients. Eq. (45) can be used 
as a criterion to judge the validity of the solution because the velocity 
field has already been determined in the previous section. Substituting 
Eq. (10) into Eq. (45) and using Theorem 2, the result is as follows.

Ω  Ω   Ω (46)

The unsteady case is only considered because unsteady flow 
contains steady flow. When  is unsteady, using the moving 
coordinate system, Eq. (46) can be expressed as
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Ω  Ω (47)

The first term on the right-hand side in Eq. (47) represents vortex 
stretching and turning, which is zero for two-dimensional flows. 
Therefore, Eq. (47) is presented for two-dimensional flows as follows 
since Ω  Ω  . 
Ω   (48)

A stream function can be defined as  and   . 
Therefore, Ω  . Ω    because the stream function is 
also a solution of Helmholtz equation. Substituting it into Eq. (48), 
gives

      (49)

Therefore, Eq. (47) is satisfied for two-dimensional flows. Ω   
and   . Hence, Eq. (47) is expressed as

Ω  Ω (50)

For Beltrami flow, i.e., Ω  ϕ , where ϕ is a scalar field, Eq. (50) 
is satisfied. Therefore, Eq. (47) is satisfied for Beltrami flow. As a 
result, the solution presented in this study satisfies the vorticity 
equation.

 
6.3 Taylor–Green Vortex

The Taylor–Green vortex solution is used to test and validate the 
temporal accuracy of NS algorithms (Chorin, 1968; Kim and Moin, 
1985). Taylor–Green vortex solution (Taylor and Green, 1973) is 
presented as follows. In the domain ≤ ≤, the velocity field 
is expressed as

  sincos (51)

 cossin (52)

where     . The pressure field is expressed as

  cos cos  (53)

and the vorticity is expressed as

Ω  sinsin (54)

Eqs. (51)–(54) were cited from Taylor and Green (1937). Therefore,    and   . The velocity is a solution of the 
homogeneous Helmholtz equation. Therefore, this study for  
gives the Tayor–Green vortex. Ω Ω , which is a solution of the 

Helmholtz equation. Because the flow is 2-D, Ω  , Ω  , and 

Ω  Ω  . Therefore, ΩΩ  , and   . Substituting the 
velocity and vorticity into Eq. (26), the dynamic pressure for  is 
calculated as follows:

  cos cos
For  = 1/4, the above gives Eq. (53). Therefore, the Taylor–Green 

vortex is a special case for steady flow in Sec. 4.1.

6.4 Viscous Three-Dimensional Periodic Solution
Antuono’s (2020) solutions for three-dimensional problems are 

defined on a three-dimensional torus ≤ ≤ and are 
characterized by positive and negative helicity, respectively. The 
solution with positive helicity is expressed as 

 sin  cos  sin  
cos  sin  sin   

If i = 1, then j = 2, and l = 3; if i = 2, then j = 3, and l = 1; if i = 3, then 
j = 1, and l = 2. The solution is a sample for steady flow in Sec. 4.2. 
The velocity field is presented with a linear combination of three 
trigonometric functions with respect to three variables,  ,   and  . 
The velocity field is a solution of the Helmholtz equation for   
because the linear combination is a solution of the Helmholtz equation. 
The vorticity field is parallel to the velocity because both solutions 
belong to the class of the Beltrami flow presented in Sec. 4.2. For the 
case with positive helicity, the solution is Ω  ϕ  where ϕ  , 
and the dynamic pressure is given by Eq. (26) for   . Antuono’s 
(2020) solutions are also special cases of the solutions presented in 
Sec. 4.2.

6.5 Two-Dimensional Progressive Water Waves
Using the conventional coordinate system considered in Shin (2022, 

2023), the phase is defined as   where k is the wave number. 
Therefore,  corresponds to    for 2-D inviscid flow. Using 
Eqs. (42) and (44), 

    (55)

Using power series expansion,  , where  stands 
for Big-O notation. Therefore, for inviscid flow, Eq. (55) gives  as 
defined in Shin (2022, 2023). “” has a unit of angular frequency. 
Thus, a dimensionless quantity called the “damping ratio” is defined as ≝. Using the damping ratio, the phase for viscous flow is 
represented as

      (56)
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Multiplying    by the velocity field in Shin (2022, 2023) gave a 
solution to the NS equation. Multiplying    to the dynamic 
pressure in Shin (2022, 2023) gives the pressure field for viscous flow. 
In the conventional coordinate system, the kinematic free surface 
boundary condition (KFSBC) is presented as

 ∂∂ ∂∂ (57)

where   and   are horizontal and vertical velocities, respectively, for 
viscous flow, and  is the wave profile. The KFSBC stipulates that 
there must be no flow crossing any fluid interface. The free surface, 
which is a fluid interface, remains unaffected by the viscosity. 
Consequently, the kinematic boundary condition should remain 
unaltered by viscosity. Using Eq. (10), the KFSBC is presented as

  ∂∂ ∂∂ (58)

where   and   are the horizontal and vertical velocities, respectively, 
for inviscid flow. The dimensionless elevation of the wave profile is 
defined as   in Shin (2022, 2023), where h is the water 
depth. Using the phase defined in Eq. (56),

∂∂ ∂∂ ∂∂ ∂∂      (59)

 and

∂∂ ∂∂∂∂ ∂∂    (60)

Substituting Eqs. (59) and (60) into Eq. (58), results in Shin (2022, 
2023) because   ≠. The KFSBC in Shin (2022, 2023) is still 
valid for viscous flow. Applying the dynamic boundary condition on 
the free surface to Eq. (35), the wave height for viscous flow is 
expressed as

  (61)

where  is the wave height at  . Waves emanating from a remote 
source are referred to as swells, whereas waves produced in the nearby 
vicinity are termed seas. Specifically, waves formed due to the 
wind-induced forced oscillation of water are generally identified as 
seas. In contrast, those originating from the natural oscillation of water 
post the cessation of wind are labeled as swells. Eqs. (56) and (61) 
indicate that the height of swell waves decreases when wind energy no 
longer influences wave formation, leading to a longer wave period and 
an increase in wavelength over time. The quantity “b” represents the 
strength of vorticity,  defined in Shin (2022).   because the 
length is normalized by the wavelength in Shin (2022, 2023). Using , the damping ratio is determined as follows:

  (62)

A logarithmic decrease is used to determine the damping ratio. 
Using Eq. (61), the damping ratio can be expressed as

  ln  (63)

where  , and   represent the wave height of any two successive 
peaks. Although the strength of vorticity, , is determined using the 
average water particle velocities on the free surface and the seabed in 
Shin (2022, 2023), it can also be determined using Eqs. (62) and (63), 
which indicate that the currents considered in Shin (2022, 2023) are 
generated by the same source as the waves, but they differ from the 
Stokes drift. This study has proven that viscosity is the source of 
circulation and current in fluids. 

Dean and Dalrymple (1984) provide the decay modulus for long 
waves with frictional damping as follows:

 (64)

where P is the Proudman number, ≝ . Shiau and Rumer 
(1974) carried out a series of experiments to examine the decay of 
seiches in a basin. The experiments were conducted in very shallow 
water (0.15 < h < 8.5 cm). The theoretical values of  in Eq. (64) were 
comparable to the experimental data in Fig. 1. 

The velocity fields for viscid flows,  , were checked. The velocity 
fields for inviscid flows,  , were compared with experimental data by 
Le Méhauté et al. (1968) in Shin (2022, 2023). Therefore, according to 
Eq. (10), the function,  was checked instead of the velocity field,  , as follows. Eq. (61) is valid for long waves because Shin (2022, 
2023) is valid even for ultra-shallow water waves.   
from Eq. (61) because the decay modulus is defined by the relative 
reduction in amplitude over one wave period. Using Eq. (62), the 
decay modulus is expressed as

  (65)

Note that    for shallow water waves and  . Using 
Eq. (11) in Shin (2023), Eq. (65) is expressed as

 



cos    (66)

where  is the average speed in the horizontal direction over a period 
on still water and  is the average speed in the horizontal direction 

over a period on the seabed.    and   , where  is the 
celerity. Upon comparing Eq. (64) and Eq. (66), two distinct 
differences emerge between these equations. Eq. (64) is based on 
long-wave theory. Owing to the relatively small water depth in relation 
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to the wavelength, variations in velocity in the vertical direction were 
disregarded, and only the average velocity was considered in Eq. (64). 
Consequently, the decay modulus in Eq. (64) is not dependent on the 
velocity distribution. On the other hand, the decay modulus in Eq. (66) 
is closely associated with the velocity distribution. Dean and 
Dalrymple (1965) used a quadratic friction law where the shear stress 
is directly proportional to the square of the velocity. The decay 
modulus in Eq. (64) was calculated assuming that bottom shear stress 
is presented by    , where   is the horizontal velocity. 

Therefore, the shear stress is directly proportional to  . The present 
study used a Newtonian fluid model in which shear stress is linearly 
related to the strain rate, expressed as     , where  is 
the horizontal direction and   is the vertical direction. Therefore, the 
shear stress is directly proportional to . Consequently, this leads to a 
change in the exponent of P from 1/4 to 1/2. When the same 
constitutive equation and the average concept considered in the long 
wave theory are used, the average shear stress gradient is as follows.

  cos 

  (67)

Substituting Eq. (67) into the right side of Eq. (13), the decay 
modulus is presented as

 



cos    (68)

For the velocity ratio, 
  cos  , Eqs. (64) and (68) are 

equivalent to one another, as shown in Fig.1. Eqs. (64) and (68) are 

compared in Fig. 1. The comparison results indicated a significant 
level of concordance between Eq. (64) and Eq. (68). In contrast, this 
indicates a distinction between Eq. (64) and Eq. (66). The distinction 
elucidates the rationale behind Dean and Dalrymple's (1965) choice to 
use a quadratic friction law instead of a Newtonian fluid model. Eqs. 
(67) and (68) express the applicability of this study even for 
non-Newtonian fluids, provided that the linearization of shear stresses 
is achieved using the technique described by Dean and Dalrymple 
(1984).

7. Conclusions

NS equations play a crucial role in elucidating various scientific and 
engineering phenomena. They are used in modeling ocean currents, 
water waves, and other water flows. They help with the design of the 
structure. Despite the wide range of practical applications, the 
equations are mainly solved using numerical or experimental methods, 
while there are some exact solutions to specific problems. 

General solutions to NS equations for incompressible flow are 
presented in this study. The solutions were calculated by combining 
the solutions of the Helmholtz equation and the solution of a 
single-degree-of-freedom damped harmonic oscillator. They are 
analytical exact solutions to NS equations.

The velocity fields and the vorticity fields were presented with 
solutions of the Helmholtz equations. When the velocity fields are 
expressed as the product of the solution of the Helmholtz equation and 
a univariate function of time, the NS momentum equation is 
decomposed into the Euler momentum equations and an ordinary 
differential equation for the univariate function of time. The Euler 
momentum equations were converted to Bernoulli’s principle to 

Fig. 1 Decay modulus versus Proudman number [Experiment data from Shiau and Rumer (1974)].
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determine the pressure field. The time function was determined by 
solving the ordinary differential equation. Consequently, the general 
solutions were derived through the linear combinations of the 
solutions to the Helmholtz equation. The solutions presented in this 
study are functions of class ∞  because solutions of the Helmholtz 
equations are smooth (Lin, 1988). 

The Taylor–Green vortex solution and the solutions proposed by 
Antuono (2020) are particular cases of these solutions, and these 
solutions satisfy the vorticity equations. The solutions presented by 
Shin (2022, 2023) were enhanced to integrate viscid water waves with 
shear currents.

As time elapses or as a swell moves away from its generating area, 
its height decreases while the period and wavelength increase. 
Eventually, the swell dissipates entirely because of the removal of the 
energy source. This phenomenon was substantiated mathematically in 
the present study. The decay modulus was compared with the 
experimental data from Shiau and Rumer (1974) and the solution 
proposed by Dean and Dalrymple (1984). The agreement was 
excellent. Unlike Dean and Dalrymple (1984), the study showed that 
the decay modulus is influenced by the velocity gradient in the depth 
direction.

The technique presented in this study can also be applied to 
non-Newtonian fluid, provided that the linearization of shear stresses 
is achieved through the technique described by Dean and Dalrymple 
(1984). 
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