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ABSTRACT: Waves are mainly generated by wind via the transfer of wind energy to the water through friction. When the wind subsides, the
waves transition into swells and eventually dissipate. Friction plays a crucial role in the generation and dissipation of waves. Numerous wave
theories have been developed based on the assumption of inviscid flow, but these theories are inadequate in explaining the transformation of
waves into swells. This study addressed these limitations by analytically deriving general solutions to the Navier-Stokes equations. By expressing
the velocity field as the product of a solution to the Helmholtz equation and a time-dependent univariate function, the Navier-Stokes equations are
decomposed into an ordinary differential equation and the Euler equations, which are solved using tensor calculus. This paper provides solutions
for viscous flow with shear currents when applied to the water wave problem. These solutions were validated through their application to the
vorticity equation. The decay modulus of water waves was compared with experimental data, showing a significant degree of concordance. In

contrast to other wave theories, this study clarified the process through which waves evolve into swells.

1. Introduction

Water waves are considered one of the most fascinating natural
phenomena in the marine environment. Waves in the open ocean are
generally generated by winds. The transmission of energy from the wind
to the water is facilitated by friction between these two fluid media. This
energy is transmitted as a wave across the water surface. Consequently,
friction plays a pivotal role in the circulation of fluids and is a crucial
factor in wave generation. The energy transferred from the wind to waves
diminishes as the wind intensity decreases, leading to the transformation
of waves into swells that eventually dissipate. Therefore, friction also
contributes to the dissipation of waves. Nevertheless, the mathematical
description of water waves has been conducted under the assumption of
irrotational, inviscid flow (Chaplin, 1980; Chappeleakimr, 1961; De,
1955; Dean, 1965; Fenton, 1988; Kishida and Sobey, 1988; Korteweg
and de Vries, 1895; Rienecker and Fenton, 1981; Shin, 2016, 2019;
Stokes, 1847; Stoke, 1880; Skjelbreia and Hendrickson, 1960;
Vanden-Broeck and Schwartz., 1979) or under the assumption of
rotational, inviscid flow (Rankine, 1863; Chen and Zou, 2019;
Constantin, 2005; Dalrymple, 1974; Henry; 2008; Nwogu, 2009; Shin,
2022, 2023). Hence, these studies cannot account for the natural
dissipation of waves. In a few exceptional cases, viscosity is considered

in the linearized Navier-Stokes equations, e.g., water waves over a

viscous mud bottom and seiche phenomena in coastal regions. The
equation (Dean and Dalrymple, 1984) for long waves with bottom
friction is analogous to that of a damped harmonic oscillator. The
amplitude decreases exponentially with time, and the angular frequency
also changes, providing an important clue for solving the Navier—Stokes
(NS) equations. NS equations are a set of nonlinear partial differential
equations that govern the flow of Newtonian fluids. These equations are
valuable because of their ability to elucidate numerous physical
phenomena. The structural design process commences by evaluating the
external appearance of the design object and the loads on the surface
generated by fluid flow. The NS equations are used for these
determinations. Despite the wide range of practical applications, the
existence of smooth solutions in three dimensions has not been proven
definitively. Theoretical solutions remain limited for most cases, with
only a few exceptions. Analytical approaches are deemed almost
impossible for solving these problems. Thus, only numerical and
experimental methods are allowed. This study applied a theoretical
approach with tensor calculus to address these limitations. General
solutions were introduced without considering the boundary conditions
and initial conditions.

NS equations are the Euler equations with the addition of the
gradient of the viscous stress tensor. The viscous stress tensor is
proportional to the strain rate, making the gradient of viscous stress a
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linear function of the velocity field. The convective acceleration is the
only nonlinear term included in the Euler equation. Shin (2022, 2023)
reported the complete solutions to the Euler equations. They
transformed the Euler equations into Bernoulli's principle when the
velocity field was described by the solutions of the Helmholtz
equation. Using the methodology used in the studies conducted by
Shin (2022, 2023) with the solution for a damped harmonic oscillator,
the findings were extended to cover general three-dimensional viscous
flow in the current study.

When the velocity field is described by solutions of the Helmholtz
equation, the gradient of the viscous stress tensor for incompressible
flow is proportional to the velocity field. The product of a solution to
the Helmholtz equation and any time function is also a solution to the
Helmholtz equation. By substituting the product into the NS equations,
these equations can be decomposed into the Euler equations and a
linear ordinary differential equation for the time function. Based on
Shin's (2022) research, this study solved the Euler equations for
general flow. Some exact solutions to NS equations exist. The Taylor—
Green vortex (Taylor and Green, 1937) and Antonio's solution
(Antuono, 2020) are two interesting examples. The Taylor-Green
vortex was an unsteady flow of a decaying vortex in Cartesian
coordinates. Antonio's solution is considered a three-dimensional
generalization of the classic two-dimensional Taylor-Green vortex.
For verification, the Taylor-Green vortex and Antonio's solutions are
special cases of the solutions presented in this study. Substituting the
results into the vorticity equations confirmed that the vorticity
equations were satisfied.

This study adjusted Shin's results (2022, 2023) to comply with NS
equations. The process through which waves evolve into swells was
elucidated. The modified wave theory was verified by comparing the
decay modulus with the experimental data of Shiau and Rumer (1974)
and the theoretical solution presented by Dean and Dalrymple (1984).
The comparison results showed a high level of agreement.

2. Navier-Stokes Equations for
Incompressible Flow

Tensor notation was used for simplicity, and the following rule was
adopted when using tensor notation. Whenever the subscript appeared
twice as a letter in a grouping, the expressions of this grouping were
summed, with the repeated index taking on successively the values 1,
2, and 3. The non-repeated letter subscripts or numerical subscripts
remain fixed during the process (Dym and Shames, 1973). The partial

derivatives of a tensor are denoted using commas and indices as

a()
ox;

i

= (),,where z; is the position vector; the conservation of mass is

presented as follows:
v, =0 (@)

where v, is the velocity field, which is a vector function of position, «;,

and time, ¢. The conservation of momentum is presented as follows:

v; + v ;=

Bt @
A time derivative will be denoted with the ‘over-dot’ notation.
Therefore, v, is the local acceleration. p is the density of the fluid,
which is a constant; p=p(x,.¢t) is pressure field; 4 is kinematic
viscosity, which is a constant; £; is body force per unit mass, which is
a conservative force. The NS equations for an incompressible fluid are
composed of Egs. (1) and (2). The vorticity is defined as follows:

Qi cfel'[ujvq.p (3)

where ¢,

vorticity and the Levi-Civita symbol results in

is the Levi—Civita symbol. Taking the inner product of the

0, =V, TR, (@)

Taking the inner product of the velocity v, and the deformation

tensor v, ,, the convective acceleration in Eq. (2) is expressed as
Ul = Ulq T 0S%Eip ®

Replacing p =, ¢ =i, and i = k, Eq. (5) can be presented as follows

=p,Q€ . = Q€

because v, € i

po%Sipg p%iCqip

VY T 00 T €0, ©6)
Substituting Eq. (6) into Eq. (2), the alternative form of the

momentum equation is represented as follows:

. p;
v; Top;,; + ?*fl = €0 T 1, (@)

Because f; is a conservative force, it has potential energy. The first
term on the right-hand side represents the outer product of the velocity
and vorticity. Therefore, the term is zero when the vorticity and the

velocity are parallel to each other.
3. Decomposition of the Navier-Stokes Equations

A definitive clue to solving the NS equations can be found in the
solution of a single-degree-of-freedom damped harmonic oscillator or
long waves with bottom friction (Dean and Dalrymple, 1984). In the
oscillator, the damping force is proportional to the velocity z of the
object because it is due to fluid viscosity: — ¢z, where c is the damping
coefficient. Newton’s second law for a damped harmonic oscillator is

presented as follows:

Z+ 26wzt o’z2=0 ®)
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where wis the undamped angular frequency of the oscillator, and ¢ is

the damping ratio. The displacement is expressed as
2(8) = Ae 'sin (V1—E wt+¢) ©)

where A is the amplitude, ¢ is the phase, and ¢”*“' is the exponential
decay of the amplitude. Eq. (9) indicates that the damping force
reduces the natural frequency, decreases the amplitude, and eventually
eliminates the oscillation. Considering that the gradient of viscous
stress in Eq. (7) arises from a Newtonian fluid, similar to the oscillator,
the solutions to the NS equations are presented in a similar form to Eq.
(9). If the velocity field is a solution to the Helmholtz equation, i.e.,
Yi.jj = wbu;,

where b is a constant with the unit of inverse area. Therefore, like the

= bv;, the gradient of viscous stress is presented as v, ;;
damped harmonic oscillator, the gradient of viscous stress is
proportional to the velocity field. Eq. (9) is based on the assumption

that the velocity field for viscous flow is represented as follows:
L e A A (N (10)

where F(#) is a function of time, which is a dimensionless quantity,
and «; is a velocity field for inviscid flow to satisfy the Helmholtz
equation. Examples of # include the water particle velocities
presented by Shin (2022, 2023).

Theorem 1. When the velocity fields are represented as a product of
a time function and solutions of the Helmholtz equation, the NS
equations can be decomposed into the Euler equations and an ordinary

equation for the time function.

Proof. Substituting Eq. (10) into Eq. (1), the conservation of mass is

presented as follows:
u ;=0 (11)

The gradient of viscous stress is presented as s, ;=

wbo; = pbF(t)u,, and the local acceleration is presented as follows:
v, = Fu, + Fi, (12)

Substituting Eq. (12) and p; ;. = #bF(t)u; into Eq. (7), Eq. (7) is

converted to the Euler momentum equation, provided that the

Yisij

following condition is satisfied:
Fu, = pbFu, (13)
Because #; # 0, the solution to Eq. (13) can be presented as follows:

Fl)= e (14)

The constant, b, must be negative because the flow must eventually

dissipate. Eq. (14) shows similarities to the exponential decay of the
amplitude, as expressed in Eq. (9). Eq. (7) is presented as follows:

g b ]77- 9
Fu; + qujujj + —(’)7 f,=F’%

ijk

R, 15)

where the vorticity, Q, % F(¢)Q,. Therefore, Q, =¢,, u, .

Theorem 2. When the velocity field is a solution of the Helmholtz
equation, then the vorticity is also a solution of the Helmholtz
equation.

=b(e.

ipq q,p) =0

i

Proof. Qzl/’/ - (Ez'pq”w)J/ - (Ez'Pr1Ur1v/'/><P - (eiquvr/ ><P
As aresult, the velocity field and the vorticity field were determined
using the Helmholtz equation. The next step was to determine the
pressure field using Eq. (15). “0 < F(#) <17, and it has no dimensions.
Hence, it is considered a non-dimensional perturbation parameter.
Using the perturbation method, Eq. (15) can be solved in the following

chapters for two cases: «; is steady flow and #; is unsteady flow.

4. Pressure Field for Steady Flow

When the velocity field, «# is independent of time, Eq. (10) is

presented as follows:
v, (t, 2,2y, 25)= F(0)tt; (), 2,2, (16)

Therefore, the local acceleration in Eq. (15) is zero. The pressure
field is presented as the sum of the dynamic pressure and static
pressure. The pressure field must be presented by a quadratic function
with respect to F(#) because the dynamic pressure is proportional to
the square of the velocity, and static pressure is proportional to the

body force, as follows.
pdéps(xlvxz*xs)JrFZ(f)‘)D(xL’xz*xs) a7

The first and second terms mean the static and dynamic pressures,
respectively. Substituting Eqgs. (16)~(17) into Eq. (15), the result is
presented as

(S, =)+ (D, +u,; — €09, ) F2 =0 (18)

Eq. (18) is decomposed with two equations because Eq. (18) is valid
for all ¢, and F(#) # 0, using the perturbation method, as follows. The
zero-order perturbation equation is presented as follows:

Si=/; (19)

The second-order perturbation equation is presented as

Dt — €085, =0 (20)
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Integrating Eq. (19), the potential energy of the body force is
determined as follows:

5= fz; @1

The static pressure field is determined using Eq. (21). #, is a solution

of the Helmholtz equation. Hence, #; ,, = bu;. Therefore, the last term

> Ui pp
of Eq. (20) is presented as follows:

€t @y = B it e (22)
Using Eq. (4),

Uipp = ( i+ Q,e,m) o Ui TR 6y 23)
Using Eq. (11), %, ,; = 0,and % ,, = , ¢, .. Substituting it into Eq. (22),
6‘ijki't/gzk - b L/k 71)]91 [JQz - Z(ak?'at.j) 75}{1187'[)97.[)9k (24)

1 S -
= Z(ngk,i - ngi.k)

Where ¢;; is the Kronecker delta. Since divergence of curl is zero, we
have ©,,=0. Therefore, 2,9, =(2,2;),. Let’s introduce a

quantity, E.i%(Q,Q,),. Therefore, E= [ (2,9,),dx; is a type of

kinetic energy. Because @, is also a solution of the Helmholtz
equation and is determined by the velocity field, the energy, E can be
casily determined. Substituting Eq. (24) into Eq. (20), the result is
presented as follows.
1 PairaY —
D, +uu; —;(ng,&[ —E,)=0 (25
Bernoulli’s principle can be expressed as Eq. (26) by integrating Eq.
(25) with respect to z;:
1 y o= =
D+ 25 Uit 79 Q, =) (26)
The dynamic pressure field is determined using Eq. (26). The
second term represents the kinetic energy associated with irrotational
motion. In contrast, the third term represents the kinetic energy related
to the vortex. The total kinetic energy is the linear sum of the two

terms because the constant, b is negative, which is consistent with the

law of conservation of energy. The ratio, 1, is defined as

2F
rEl— —— 27
2.0, @7
©,Q, >2E>0 because the kinetic energy is a positive-definite

function and the constant, , is negative. Therefore 0 < » < 1.

The energy E is referred to as an anti-vortex energy because it
reduces the kinetic energy due to the vortex like frictional energy. Two

cases of anti-vortex energy are considered as follows:

4.1 Anti-Vortex Energy Zero Case

Q, =Q, =0and Q, , = 0 for 2-dimensional flow. Hence,

el

12, =0 (28)
Therefore, » =1 for two-dimensional flow. This condition is not
generally valid in three-dimensional flow. Examples include the
Beltrami flows considered in the next section.

4.2 Beltrami Flow

Beltrami flows are flows in which the vorticity vector and the
velocity vector are parallel to each other. The outer product of the
velocity and the vorticity is zero, i.c., € jku]ﬁk

(24), @,

=0. Applying it to Eq.

=Q,Q, ,. Therefore, » =0 for a Beltrami flow. In this

fe,i

case, Eq. (26) represents Bernoulli’s principle for irrotational flow,
and Beltrami flow is like irrotational flow.

5. Pressure Field for Unsteady Flow

When the velocity field, # is unsteady flow, the velocity field can
be expressed as Eq. (10). A typical example is progressive water
waves (Shin, 2022, 2023). Using the moving coordinate system
proposed by Dean (1965), an unsteady flow can be converted into a
steady flow, as presented in the previous Chapter. The moving

coordinate system is defined as
X2z, G) 29)

G.(t) has a length unit. In a damped harmonic oscillator, angular
frequency is modified with a damping ratio, “¢,” as shown in Eq. (9).
Therefore, the function G, (#) shows that viscosity also affects the
angular frequency of water waves. The first term in Eq. (15) must be a
quadratic term of F(¢), it is assumed that the function G (¢) is defined

as
GO=GRY) (30)

where C, is the phase speed for water waves or a reference speed for
other flow, which is a constant. The relative velocity with respect to
the moving coordinate system is presented as

U= C 3D

=9, (32)
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Using Egs. (29) and (30),
X =GRy 33)

Using the coordinate system, the velocity field in Eq. (10) can be
expressed as

o (txy, 2y x5)= Flu, (X, X, X)) (34)

The pressure field can be presented by a quadratic function with
respect to £(¢#) as follows:

Dty 2y, 25)= oSy, 25, 25+ FP 0D X, X, X, (35)

where the velocity field «; is a solution of the Helmholtz equation.
Using Egs. (29), (31), and (33), the local acceleration in Eq. (15) is
presented as

du;  du; IX; 7 du; e QU 16
at X ot T ToX T aX (36)
The convective acceleration in Eq. (15) is presented as
du; U
U dzx, (U/+C;) X (37)

Differentiating Eq. (35), the gradient of the pressure is presented as

1P 4 aD BS
afo(t) X

(38)

Substituting Egs. (36)-(38) into Eq. (15), the result is expressed as
follows:

oD oy, 1[= 92,
—+ —Z_—lQ
Ufa)g b\ "k

1 ;
e, o
i 3

S
(5o 3%

FP=0 (39

The zero-order perturbation equation is presented as the same in Eq.

(19), and the second-order perturbation equation is presented as

_ 0, — oL

k ox; k ox,,

oD U 1
anab

=0 (40)

~><

Because dX; =dz;, integrating the above equation with respect to

dx; gives Bernoulli’s principle as follows:
5 UU ﬁgsz = Q) (1)

The dynamic pressure field was determined using Eq. (41).
Substituting Eq. (14) into Eq. (30) and integrating the result results in

G o
Gl)= e+ B 2)

7

where B is an integral constant. For inviscid flow, G;(1)=Ct as
proposed by Dean (1965); hence, there is a condition to determine the

constant.

limG(#t)= Ct 43)

© —0

The integral constant is determined as
B= G 44
R 44)

6. Results and Verification

Some exact solutions to the NS equations exist for specific
conditions (Antuono, 2020; Ethier and Steinman, 1994; Taylor and
Green, 1937; Wang, 1991). For verification, the Taylor-Green vortex
and Antonio's solution were proven to be specific cases of the general
solutions presented in this study.

6.1 General Form of the Velocity Field
A function, f(x)=¢""

section, satisfies that /”(x)

“q”

, where is a complex number in this
=d*f(x). Therefore, the general solution
to the Helmholtz equation is presented with a linear combination, i.e.,
~
", = Z A{] e‘lﬂl’ Gy(t) ef‘1127 Gz(f)ed/rrs’ Gy(t)
g=1

, where « , ¢

q> g’

and d, are

complex numbers in this section, and b=a, +Cz+d2 to satisfy

u; ;; = bu;. The coefficients 4, are determined to satisfy Eq. (11),
boundary conditions, and initial conditions. The vorticity is also
presented with the same form. Three samples are presented in the

following sections.

6.2 Vorticity transport equation

Differencing Eq. (2) with respect to x, and taking the inner product
of the result and the Levi-Civita symbol, €, ; with respect to the
indices i and ¢, the vorticity transport equation can be derived as
follows.

Q+oQ  =Qu  +uQ (45)

v
The left-hand side is the material derivative of the vorticity vector.
The first term on the right-hand side describes the stretching or turning
of vorticity caused by the flow velocity gradients. Eq. (45) can be used
as a criterion to judge the validity of the solution because the velocity
field has already been determined in the previous section. Substituting
Eq. (10) into Eq. (45) and using Theorem 2, the result is as follows.
RO, + Fu@, = P, (46)
The unsteady case is only considered because unsteady flow
contains steady flow. When #; is unsteady, using the moving

coordinate system, Eq. (46) can be expressed as
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U, = . 47)

The first term on the right-hand side in Eq. (47) represents vortex
stretching and turning, which is zero for two-dimensional flows.
Therefore, Eq. (47) is presented for two-dimensional flows as follows

since Q, =Q, =0.
UQ, ;=0 48)

A stream function can be defined as ] =y,and U, =—vy ;.
Therefore, Q, =v ;. Q =y, =by because the stream function is
also a solution of Helmholtz equation. Substituting it into Eq. (48),

gives

Gy, T Oy, =04+ 054 =0 49)

Therefore, Eq. (47) is satisfied for two-dimensional flows. Q ;=0
and U, ; = 0. Hence, Eq. (47) is expressed as

(UJ§7>/ = (QJUr>/ (50)

For Beltrami flow, i.e., §,- =¢ U, where ¢ is a scalar field, Eq. (50)
is satisfied. Therefore, Eq. (47) is satisfied for Beltrami flow. As a
result, the solution presented in this study satisfies the vorticity

equation.

6.3 Taylor-Green Vortex

The Taylor-Green vortex solution is used to test and validate the
temporal accuracy of NS algorithms (Chorin, 1968; Kim and Moin,
1985). Taylor-Green vortex solution (Taylor and Green, 1973) is
presented as follows. In the domain 0 < x,x, < 27, the velocity field

is expressed as
v, = sinx, cosz, Ft) (1)
v, =— cosz,sinz, F{t) (52)

where F(t) =e¢ 2*'. The pressure field is expressed as
b= %(cosZac1 +cos2z,) F2(t) (53)

and the vorticity is expressed as
Q, = 2sinz, sinx, F(¢) (54)

Eqgs. (51)-(54) were cited from Taylor and Green (1937). Therefore,
v ;=20 and v, ;;=—2u,. The velocity is a solution of the
homogeneous Helmholtz equation. Therefore, this study for 6=—2
gives the Tayor-Green vortex. Q, ;; =— 29, which is a solution of the

Helmholtz equation. Because the flow is 2-D, §1 =0, ﬁz =0, and

Q, = Q,(2,.z,). Therefore, ©,Q;, =0, and »=1. Substituting the
velocity and vorticity into Eq. (26), the dynamic pressure for 6=—2 is
calculated as follows:

1 1
D= Z(COSle +C052x‘2)+ Q* Z

For Q= 1/4, the above gives Eq. (53). Therefore, the Taylor-Green

vortex is a special case for steady flow in Sec. 4.1.

6.4 Viscous Three-Dimensional Periodic Solution

Antuono’s (2020) solutions for three-dimensional problems are
defined on a three-dimensional torus 0 <x,z,z, < Land are
characterized by positive and negative helicity, respectively. The
solution with positive helicity is expressed as

v = q[sin kx; — %)cos(kxj + %)sin(kxﬂr g)
_ AW T\ . Y P
cos| kz, 3 Jsin kx; + 3 sm(kx]. + 5)}@ £

Ifi=1,thenj=2,and/=3;ifi=2, thenj =3, and /= 1; if i =3, then
j =1, and / = 2. The solution is a sample for steady flow in Sec. 4.2.
The velocity field is presented with a linear combination of three
trigonometric functions with respect to three variables, z,, x, and z,.
The velocity field is a solution of the Helmholtz equation for b=— 3%
because the linear combination is a solution of the Helmholtz equation.
The vorticity field is parallel to the velocity because both solutions
belong to the class of the Beltrami flow presented in Sec. 4.2. For the
case with positive helicity, the solution is ©, = ¢« where ¢ =—/3k,
and the dynamic pressure is given by Eq. (26) for » =0. Antuono’s
(2020) solutions are also special cases of the solutions presented in
Sec. 4.2.

6.5 Two-Dimensional Progressive Water Waves

Using the conventional coordinate system considered in Shin (2022,
2023), the phase is defined as 8 = kx — wtwhere k is the wave number.
Therefore, &G corresponds to wt = kCt for 2-D inviscid flow. Using
Egs. (42) and (44),

QD)= %(e”“ -1) (55)

Using power series expansion, kG= wt+ O((zbt)*), where O stands
for Big-O notation. Therefore, for inviscid flow, Eq. (55) gives wt as
defined in Shin (2022, 2023). “«b” has a unit of angular frequency.
Thus, a dimensionless quantity called the “damping ratio” is defined as
&% — pb/w. Using the damping ratio, the phase for viscous flow is

represented as

_ —Ewt
P a)z‘[il o } (56)
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Multiplying ¢~ “* by the velocity field in Shin (2022, 2023) gave a

2&wt

solution to the NS equation. Multiplying ¢~ to the dynamic
pressure in Shin (2022, 2023) gives the pressure field for viscous flow.
In the conventional coordinate system, the kinematic free surface

boundary condition (KFSBC) is presented as

a7 a7
) = —4p —
2T o,

(7
where »; and v, are horizontal and vertical velocities, respectively, for
viscous flow, and 7 is the wave profile. The KFSBC stipulates that
there must be no flow crossing any fluid interface. The free surface,
which is a fluid interface, remains unaffected by the viscosity.
Consequently, the kinematic boundary condition should remain
unaltered by viscosity. Using Eq. (10), the KFSBC is presented as

_ an | _ a7
¢y, = Lo tety, — 1 58
= P (58)

where «, and w, are the horizontal and vertical velocities, respectively,
for inviscid flow. The dimensionless elevation of the wave profile is
defined as y =k(»+#%) in Shin (2022, 2023), where / is the water
depth. Using the phase defined in Eq. (56),

dn_ 97 9B_ dB d (7 _\__ @ g dr

at  aB at ot dﬂ(k ) AT (59)
and

dn _ 9y 9B _ 9B i(l, ):ﬂ

oz, 0B daxz, oz, dB\k hf=as (60)

Substituting Egs. (59) and (60) into Eq. (58), results in Shin (2022,
2023) because ¢ *“ 0. The KFSBC in Shin (2022, 2023) is still
valid for viscous flow. Applying the dynamic boundary condition on
the free surface to Eq. (35), the wave height for viscous flow is
expressed as

H=Hg % (61)
where A, is the wave height at # = 0. Waves emanating from a remote
source are referred to as swells, whereas waves produced in the nearby
vicinity are termed seas. Specifically, waves formed due to the
wind-induced forced oscillation of water are generally identified as
seas. In contrast, those originating from the natural oscillation of water
post the cessation of wind are labeled as swells. Egs. (56) and (61)
indicate that the height of swell waves decreases when wind energy no
longer influences wave formation, leading to a longer wave period and
an increase in wavelength over time. The quantity “b” represents the
strength of vorticity, o defined in Shin (2022). 6=—(ks)* because the
length is normalized by the wavelength in Shin (2022, 2023). Using
&w=— pb, the damping ratio is determined as follows:

(62)

A logarithmic decrease is used to determine the damping ratio.
Using Eq. (61), the damping ratio can be expressed as

1 ([ H

2

where H,, and H, represent the wave height of any two successive
peaks. Although the strength of vorticity, o, is determined using the
average water particle velocities on the free surface and the seabed in
Shin (2022, 2023), it can also be determined using Egs. (62) and (63),
which indicate that the currents considered in Shin (2022, 2023) are
generated by the same source as the waves, but they differ from the
Stokes drift. This study has proven that viscosity is the source of
circulation and current in fluids.

Dean and Dalrymple (1984) provide the decay modulus for long

waves with frictional damping as follows:
a=nP/! (64)

where P is the Proudman number, P2 .?/gk’h°. Shiau and Rumer
(1974) carried out a series of experiments to examine the decay of
seiches in a basin. The experiments were conducted in very shallow
water (0.15 < & < 8.5 cm). The theoretical values of @ in Eq. (64) were
comparable to the experimental data in Fig. 1.

The velocity fields for viscid flows, v, were checked. The velocity
fields for inviscid flows, u;, were compared with experimental data by
Le Méhauté et al. (1968) in Shin (2022, 2023). Therefore, according to
Eq. (10), the function, #(#) was checked instead of the velocity field,
v;, as follows. Eq. (61) is valid for long waves because Shin (2022,
2023) is valid even for ultra-shallow water waves. o= 2w 7= 4xé
from Eq. (61) because the decay modulus is defined by the relative
reduction in amplitude over one wave period. Using Eq. (62), the
decay modulus is expressed as

a= 4dn(kh)**/ P (65)

Note that «* = gk*h for shallow water waves and x = v P&*i° . Using
Eq. (11) in Shin (2023), Eq. (65) is expressed as

a= 471[(:057 1[ ! 7%5 ]’ JP (66)

1—u,

where «, is the average speed in the horizontal direction over a period
on still water and «, is the average speed in the horizontal direction
over a period on the seabed. u, =u,/C and u, =u,/C, where Cis the
celerity. Upon comparing Eq. (64) and Eq. (66), two distinct
differences emerge between these equations. Eq. (64) is based on

long-wave theory. Owing to the relatively small water depth in relation
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Fig. 1 Decay modulus versus Proudman number [Experiment data from Shiau and Rumer (1974)].

to the wavelength, variations in velocity in the vertical direction were
disregarded, and only the average velocity was considered in Eq. (64).
Consequently, the decay modulus in Eq. (64) is not dependent on the
velocity distribution. On the other hand, the decay modulus in Eq. (66)
is closely associated with the velocity distribution. Dean and
Dalrymple (1965) used a quadratic friction law where the shear stress
is directly proportional to the square of the velocity. The decay
modulus in Eq. (64) was calculated assuming that bottom shear stress
is presented by ,, = p/wpu,, where u, is the horizontal velocity.
Therefore, the shear stress is directly proportional to v/ . The present
study used a Newtonian fluid model in which shear stress is linearly
related to the strain rate, expressed as 7;, = px(u; , +u, ; ), where z,is
the horizontal direction and z, is the vertical direction. Therefore, the
shear stress is directly proportional to x. Consequently, this leads to a
change in the exponent of P from 1/4 to 1/2. When the same
constitutive equation and the average concept considered in the long

wave theory are used, the average shear stress gradient is as follows.

Uy
h

Ti22 = W[C0§ 1( - %S )] (67)

1—u,

Substituting Eq. (67) into the right side of Eq. (13), the decay
modulus is presented as

a= 4%[(:057 1( ! 5 ]]Pl/4 (68)

1—u,

1-7
For the velocity ratio, —=cos
-

%)= 0.97, Egs. (64) and (68) are

equivalent to one another, as shown in Fig.1. Egs. (64) and (68) are

compared in Fig. 1. The comparison results indicated a significant
level of concordance between Eq. (64) and Eq. (68). In contrast, this
indicates a distinction between Eq. (64) and Eq. (66). The distinction
elucidates the rationale behind Dean and Dalrymple's (1965) choice to
use a quadratic friction law instead of a Newtonian fluid model. Egs.
(67) and (68) express the applicability of this study even for
non-Newtonian fluids, provided that the linearization of shear stresses
is achieved using the technique described by Dean and Dalrymple
(1984).

7. Conclusions

NS equations play a crucial role in elucidating various scientific and
engineering phenomena. They are used in modeling ocean currents,
water waves, and other water flows. They help with the design of the
structure. Despite the wide range of practical applications, the
equations are mainly solved using numerical or experimental methods,
while there are some exact solutions to specific problems.

General solutions to NS equations for incompressible flow are
presented in this study. The solutions were calculated by combining
the solutions of the Helmholtz equation and the solution of a
single-degree-of-freedom damped harmonic oscillator. They are
analytical exact solutions to NS equations.

The velocity fields and the vorticity fields were presented with
solutions of the Helmholtz equations. When the velocity fields are
expressed as the product of the solution of the Helmholtz equation and
a univariate function of time, the NS momentum equation is
decomposed into the Euler momentum equations and an ordinary
differential equation for the univariate function of time. The Euler
momentum equations were converted to Bernoulli’s principle to
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determine the pressure field. The time function was determined by
solving the ordinary differential equation. Consequently, the general
solutions were derived through the linear combinations of the
solutions to the Helmholtz equation. The solutions presented in this
study are functions of class C” because solutions of the Helmholtz
equations are smooth (Lin, 1988).

The Taylor-Green vortex solution and the solutions proposed by
Antuono (2020) are particular cases of these solutions, and these
solutions satisfy the vorticity equations. The solutions presented by
Shin (2022, 2023) were enhanced to integrate viscid water waves with
shear currents.

As time elapses or as a swell moves away from its generating area,
its height decreases while the period and wavelength increase.
Eventually, the swell dissipates entirely because of the removal of the
energy source. This phenomenon was substantiated mathematically in
the present study. The decay modulus was compared with the
experimental data from Shiau and Rumer (1974) and the solution
proposed by Dean and Dalrymple (1984). The agreement was
excellent. Unlike Dean and Dalrymple (1984), the study showed that
the decay modulus is influenced by the velocity gradient in the depth
direction.

The technique presented in this study can also be applied to
non-Newtonian fluid, provided that the linearization of shear stresses
is achieved through the technique described by Dean and Dalrymple
(1984).
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