DOI QR코드

DOI QR Code

General Solutions to the Navier-Stokes Equations for Incompressible Flow

  • JangRyong Shin (Offshore structure design department, Hanwha Ocean Co., LTD)
  • Received : 2024.04.24
  • Accepted : 2024.09.25
  • Published : 2024.10.31

Abstract

Waves are mainly generated by wind via the transfer of wind energy to the water through friction. When the wind subsides, the waves transition into swells and eventually dissipate. Friction plays a crucial role in the generation and dissipation of waves. Numerous wave theories have been developed based on the assumption of inviscid flow, but these theories are inadequate in explaining the transformation of waves into swells. This study addressed these limitations by analytically deriving general solutions to the Navier-Stokes equations. By expressing the velocity field as the product of a solution to the Helmholtz equation and a time-dependent univariate function, the Navier-Stokes equations are decomposed into an ordinary differential equation and the Euler equations, which are solved using tensor calculus. This paper provides solutions for viscous flow with shear currents when applied to the water wave problem. These solutions were validated through their application to the vorticity equation. The decay modulus of water waves was compared with experimental data, showing a significant degree of concordance. In contrast to other wave theories, this study clarified the process through which waves evolve into swells.

Keywords

References

  1. BAntuono, M. (2020). Tri-periodic fully three-dimensional analytic solutions for the Navier-Stokes equations. Journal of Fluid Mechanics, 890, A23. https://doi.org/10.1017/jfm.2020.126
  2. Chaplin, J. R. (1980). Developments of stream-function wave theory. Coastal Engineering, 3, 179-205. https://doi.org/10.1016/0378-3839(79)90020-6
  3. Chappelear, J. E. (1961). Direct numerical calculation of wave properties. Journal of Geophysical Research, 66(2), 501-508. https://doi.org/10.1029/JZ066i002p00501
  4. Chen, H., & Zou, Q. (2019). Effects of following and opposing vertical current shear on nonlinear wave interactions. Applied Ocean Research, 89, 23-35. https://doi.org/10.1016/j.apor.2019.04.001
  5. Chorin, A. J. (1968). Numerical solution of the Navier-Stokes equations. Mathematics of Computation, 22, 745-762.
  6. Dym, C. L. & Shames, I. H. (1973). Solid Mechanics: A variational approach. McGRAW-Hill.
  7. Constantin, A. (2005). A Hamiltonian formulation for free surface water waves with non-vanishing vorticity. Journal of Nonlinear Mathematical Physics, 12(1), 202-211. https://doi.org/10.2991/jnmp.2005.12.s1.17
  8. Dalrymple, R. A. (1974). A finite amplitude wave on a linear shear current. Journal of Geophysical Research 79(30), 4498-4504. https://doi.org/10.1029/JC079i030p04498
  9. De, S. C. (1955). Contributions to the theory of Stokes waves. Proceedings of the Cambridge Philosophical Society, 51(4), 713-736.
  10. Dean, R. G. (1965). Stream function representation of nonlinear ocean waves. Journal of Geophysical Research, 70(18), 4561-4572. https://doi.org/10.1029/JZ070i018p04561
  11. Dean, R.G., & Dalrymple, R.A. (1984). Water wave mechanics for engineers and scientists. Prentice-Hall, Inc.
  12. Ethier, C. R., Steinman, D. A. (1994). Exact fully 3D Navier-Stokes solutions for benchmarking. International Journal for Numerical Methods in Fluids, 19 (5): 369-375. https://doi.org/10.1002/fld.1650190502
  13. Henry, D. (2008). On Gerstner's water wave. Journal of Nonlinear Mathematical Physics, 15(2), 87-95. https://doi.org/10.2991/jnmp.2008.15.s2.7
  14. Fenton, J. D. (1988). The numerical solution of steady water wave problems. Computers and Geosciences, 14(3), 357-368. https://doi.org/10.1016/0098-3004(88)90066-0
  15. Kim, J., & Moin, P. (1985). Application of a fractional-step method to incompressible Navier-Stokes equations. Journal of computational physics, 59(2), 308-323. https://doi.org/10.1016/0021-9991(85)90148-2
  16. Kishida, N., & Sobey, R.J. (1988). Stokes theory for waves on a linear shear current. Journal of engineering mechanics, 114(8), 1317-1334. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:8(1317
  17. Korteweg, D. J., & de Vries, G. (1895), XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 39(240), 422-443. https://doi.org/10.1080/1478644950862073
  18. Le Mehaute, B, Divoky, D, & Lin, A (1968). Shallow Water Waves: A Comparison of Theories and Experiments. Proceedings of 11th Conference of Coastal Engineeing, London, UK (pp. 86-107). https://doi.org/10.1061/9780872620131.00
  19. Lin, T.-C. (1988). Smoothness results of single and double layer solutions of the Helmholtz equations. Journal of Integral Equations and Applications, 1(1), 83-121. https://www.jstor.org/stable/26162915
  20. Nwogu, O. (2009), Interaction of finite-amplitude waves with vertically sheared current fields. Journal of fluid mechanics. 627, 179-213. https://doi.org/10.1017/S0022112009005850
  21. Rankine, W. J. M. (1863). VI. On the exact form of waves near the surface of deep water. Philosophical Transactions of Royal of London 153, 127-138. https://doi.org/10.1098/rstl.1863.0006
  22. Rienecker, M. M., & Fenton, J. D. (1981). A Fourier approximation method for steady water waves. Journal of Fluid Mechanics, 104(1), 119-137.
  23. Shiau, J. C., & Rummer Jr, R. R. (1974). Decay of mass oscillations in rectangular basins. Journal of the Hydraulics Division, 100(1), 119-136. https://doi.org/10.1061/JYCEAJ.000384
  24. Shin, J. (2016). Analytical approximation in deep water waves. Journal of Advanced Research in Ocean Engineering, 2(1), 1-11. https://doi.org/10.5574/JAROE.2016.2.1.001
  25. Shin, J. (2019). A regression analysis result for water waves on irrotational flow over a horizontal bed. International Journal of Offshore and Polar Engineering, 29(4), 461-466. https://doi.org/10.17736/ijope.2019.hc17
  26. Shin, J. (2022). Solution for water waves with a shear current and vorticity over a flat bed. International Journal of Offshore and Polar Engineering, 32(4), 418-423. https://doi.org/10.17736/ijope.2022.hc29
  27. Shin, J. (2023). Numerical method for calculating fourier coefficients and properties of water waves with shear current and vorticity in finite depth. Journal of Ocean Eng Technol, 37(6), 256-265. https://doi.org/10.26748/KSOE.2023.034
  28. Stokes, G. G. (1847). On the theory of oscillatory waves. Transactions of the Cambridge Philosophical Society, 8, 441-473.
  29. Stokes, G. G. (1880). Stokes, G.G. (2009). Mathematical and Physical Papers vol.1: Supplement to a paper on the theory of oscillatory waves (pp. 314-326). Cambridge University Press. https://doi.org/10.1017/CBO9780511702242.016
  30. Skjelbreia, L., & Hendrickson, J. (1960). Fifth order gravity wave theory. Coastal Engineering Proceedings, 1(7), 10. https://doi.org/10.9753/icce.v7.10
  31. Taylor, G. I., & Green, A. E. (1937). Mechanism of the production of small eddies from large ones. Proceedings of the Royal Society A -Mathematical and Physical Sciences, 158(895), 499-521. https://doi.org/10.1098/rspa.1937.0036
  32. Vanden-Broeck, J. M., & Schwarts, L. W. (1979). Numerical computation of steep gravity waves in shallow water. Physics of Fluids 22(10), 1868-1871. https://doi.org/10.1063/1.862492
  33. Wang, C. Y. (1991). Exact solutions of the steady-state Navier-Stokes equations. Annual Review of Fluid Mechanics, 23: 159-177. https://doi.org/10.1146/annurev.fl.23.010191.001111