Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (RS-2022-00144263, RS-2024-00356327).
References
- ASCE. (2022). Minimum design loads and associated criteria for buildings and other structures. American Society of Civil Engineers.
- Charvet, I., Suppasri, A., Kimura, H., Sugawara, D., & Imamura, F. (2015). A multivariate generalized linear tsunami fragility model for Kesennuma city based on maximum flow depths, velocities and debris impact, with evaluation of predictive accuracy. Natural Hazards, 79, 2073-2099.
- Como, A., & Mahmoud, H. (2013). Numerical evaluation of tsunami debris impact loading on wooden structural walls. Engineering Structures, 56, 1249-261.
- de Costa, R., Iwata, A., & Tanaka, N. (2019). Tsunami generated large wooden debris movement considering hybrid structures. Journal of Japan Society of Civil Engineers, Ser. B1, 75(2), I_727-I_732. https://doi.org/10.2208/jscejhe.75.2_I_727
- Dean, R. G., & Dalrymple, R. A. (1991). Water wave mechanics for engineers and scientists (Vol. 2). World Scientific Publishing Company.
- Derschum, C., Nistor, I., Stolle, J., & Goseberg, N. (2018). Debris impact under extreme hydrodynamic conditions part 1: Hydrodynamics and impact geometry. Coastal Engineering, 141, 24-35. https://doi.org/10.1016/j.coastaleng.2018.08.01
- DITECT. (2024). 2D/3D motion analysis sofware (DIPP-Motion V). Digital Image Technology Corporation. https://www.ditect.co.jp/en/software/dipp_motionv.html
- Hwang, T., Kim, J., Lee, D.H., & Lee, J.C. (2023). Location tracking of drifting container by solitary wave load using a motion analysis program. Journal of Ocean Engineering and Technology, 37(4), 158-163. https://doi.org/10.26748/KSOE.2023.023
- Hwang, T., Kim, T., Choi, S., Ko, C., & Lee, W.D. (2022). On applicability of LS-DYNA for collision analysis of drifting objects. Journal of Coastal Disaster Prevention, 9(2), 133-143. https://doi.org/10.20481/kscdp.2022.9.2.133
- Hwang, T., Kim, T., Jin, H., Kim, Y., & Lee, W.D. (2024a). Drift behavior of containers caused by solitary wave inundation on wave absorbing revetment. Journal of Coastal Disaster Prevention, 11(1), 11-20. https://doi.org/10.20481/kscdp.2024.11.1.11
- Hwang, T., Kim, T., Kim, J., Kim, Y., & Lee, W.D. (2024b). Effects of floating states on collision forces of drifting containers caused by solitary wave inundation. Journal of Earthquake and Tsunami, 2450010. https://doi.org/110.1142/S1793431124500106
- Kaida, H., Tomita, T., Yoshimura, S., & Kihara, N. (2024). Review of evaluation of tsunami-induced debris collision force. Coastal Engineering Journal, 1-27. https://doi.org/10.1080/21664250.2024.2341471
- Katell, G., & Eric, B. (2002). Accuracy of solitary wave generation by a piston wave maker. Journal of hydraulic research, 40(3), 321-331. https://doi.org/10.1080/00221680209499946
- Kharade, A.S., & Kapadiya, S.V. (2013). The impact analysis of RC structures under the influence of tsunami generated debris. International Journal of Engineering Research and Technology, 2(1), 1-10.
- KHOA. (2024). Coastline survey. Korea Hydrographic and Oceanographic Agency. https://www.khoa.go.kr/kcom/cnt/selectContentsPage.do?cntId31406000
- Kihara, N., & Kaida, H. (2019). Applicability of tracking simulations for probabilistic assessment of floating debris collision in tsunami inundation flow. Coastal Engineering Journal, 62(1), 69-84.
- Kim, T., Hwang, T., Baek, S., Hong, S., Kim, J., & Lee, W. D. (2023). Experimental investigations using computer vision for debris motion generated by solitary waves. Journal of Earthquake and Tsunami, 17(4), 2350016. https://doi.org/10.1142/S1793431123500161
- Kimoto, E., & Tomita. N., (2021). Experimental study on the effect of initial setup angle of tsunami debris object on its motion. Journal of Japan Society of Civil Engineers, Ser. B, 77(2), I_115-I_120.
- KMA. (2024). 2024 동해안 지진해일 분석보고서 [2024 eastern coast tsunami report]. Korea Meteorological Administration. https://www.kma.go.kr/download_01/tsunami/tsunami_report_2024.pdf
- Kosbab, B.D. (2010). Seismic performance evaluation of port container cranes allowed to uplift. Georgia Institute of Technology. http://hdl.handle.net/1853/33921
- Krautwald, C., Stolle, J., Robertson, I., Achiari, H., Mikami, T., Nakamura, R., Takabatake, T., Nishida, Y., Shibayama, T., Esteban, M., Goseberg, N., & Nistor, I. (2021). Engineering lessons from september 28, 2018 Indonesian tsunami: Scouring mechanisms and effects on infrastructure. Journal of Waterway, Port, Coastal, and Ocean Engineering, 147(2), 04020056. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000620
- Krautwald, C., Von Haefen, H., Niebuhr, P., Voegele, K., Schuerenkamp, D., Sieder, M., & Goseberg, N. (2022). Large-scale physical modeling of broken solitary waves impacting elevated coastal structures. Coastal Engineering Journal, 64(1), 169-189. https://doi.org/10.1080/21664250.2021.2023380
- Lee, W.D., Choi, S., Kim, T., & Yeom, G.-S. (2022a). Comparison of solitary wave overtopping characteristics between vertical and wave absorbing revetments. Ocean Engineering, 256, 111542. https://doi.org/10.1016/j.oceaneng.2022.111542
- Lee, W.D., Hwang, T., & Kim, T. (2022b). Inundation characteristics of solitary waves according to revetment type. Water, 14(23), 3814. https://doi.org/10.3390/w14233814
- Lee, W.D., Lee, S.Y., Park, J.R., & Hwang, T. (2024). Collision characteristics according to contact conditions between drifting objects and Fixed Structures in the Coastal Zone. Journnal of Coastal Research, 116(SI), 21-25. https://doi.org/10.2112/JCR-SI116-005.1
- Lee, W.D., Yeom, G.S., Kim, J., Lee, S., & Kim, T. (2022c). Runup characteristics of a tsunami-like wave on a slope beach. Ocean Engineering, 256(1), 111897. https://doi.org/10.1016/j.oceaneng.2022.111897
- Miyokawa, E., Minakawa, Y., Nakamura, G., Okuda, Y., Ikesue, S., Hirai, T., & Toita, T. (2017). Study of the impact force of tsunami debris. Proceedings of the 24th Conference on Structural Mechanics in Reactor Technology, 25-27.
- Naito, C., Cercone, C., Riggs, H. R., & Cox, D. (2014). Procedure for site assessment of the potential for tsunami debris impact. Journal of Waterway, Port, Coastal, and Ocean Engineering, 140(2), 223-232. https://doi.org/10.1061/(ASCE)WW.1943-5460.00002
- NOAA. (2024). National Geophysical Data Center / World Data Service: NCEI/WDS Global Historical Tsunami Database. NOAA National Centers for Environmental Information. National Oceanic and Atmospheric Administration. https://www.ngdc.noaa.gov/hazel/view/hazards/tsunami/runup-data/gov/hazel/view/hazards/tsunami/runup-data/
- Oda, Y., Honda, T., & Hashimoto, T. (2020). Experimental study on waterborne debris impact acting on tsunami seawall. Doboku Gakkai Ronbunshu B2. Kaigan Kogaku (Online), 76(2), I.673-I.678. https://doi.org/10.2208/kaigan.76.2_I_673
- Palermo, D., Nistor, I., Saatcioglu, M., & Ghobarah, A. (2013). Impact and damage to structures during the 27 February 2010 Chile tsunami. Canadian Journal of Civil Engineering, 40(8), 750-758. https://doi.org/10.1139/cjce-2012-0553
- Rossetto, T., Peiris, N., Pomonis, A., Wilkinson, S.M., Del Re, D., Koo, R., & Gallocher, S. (2007). The Indian Ocean tsunami of december 26, 2004: observations in Sri Lanka and Thailand. Natural Hazards, 42, 105-124. https://doi.org/10.1007/s11069-006-9064-3
- Seo, M., Yeom, G.S., Lee, C., & Lee, W.D. (2022). Numerical analyses on the formation, propagation, and deformation of landslide tsunami using LS-DYNA and NWT. Journal of Ocean Engineering and Technology, 36(1), 11-20. https://doi.org/10.26748/KSOE.2021.089
- Stolle, J. (2016). Experimental modelling of debris dynamics in tsunami-like flow conditions [Doctoral dissertation, Universite d'Ottawa/University of Ottawa].
- Stolle, J., Krautwald, C., Robertson, I., Achiari, H., Mikami, T., Nakamura, R., Takabatake, T., Nishida, Y., Shibayama, T., Esteban, M., Nistor, I., & Goseberg, N. (2020). Engineering lessons from the 28 September 2018 Indonesian tsunami: Debris loading. Canadian Journal of Civil Engineering, 47(1), 1-12. https://doi.org/10.1139/cjce-2019-0049
- A., Muhari, A., Ranasinghe, P., Mas, E., Shuto, N., Imamura, F., & Koshimura, S. (2012). Damage and reconstruction after the 2004 Indian Ocean tsunami and the 2011 Great East Japan tsunami. Journal of Natural Disaster Science, 34(1), 19-39. https://doi.org/10.2328/jnds.34.19
- Takahashi, S., Kuriyama, Y., & Tomita, T. (2011). Urgent survey for 2011 great east Japan earthquake and tsunami disaster in ports and coasts-Part I (Tsunami). Port and Air Port Research Institute. https://www.weather.gov/media/itic-car/Tohokutsunamiportssurvey.pdf
- Tanaka, N., & Onai, A. (2017). Mitigation of destructive fluid force on buildings due to trapping of floating debris by coastal forest during the Great East Japan tsunami. Landscape and Ecological Engineering, 13, 131-144. https://doi.org/10.1007/s11355-016-0308-4
- Yao, Y., Huang, Z., Lo, E.Y., & Shen, H.T. (2014). A preliminary laboratory study of motion of floating debris generated by solitary waves running up a beach. Journal of Earthquake and Tsunami, 8(3), 1440006. https://doi.org/10.1142/S1793431114400065