DOI QR코드

DOI QR Code

Beach Area Changes and Resilience of the Eastern Coasts Before and After Typhoon Goni

  • Tae-Soon Kang (GeoSystem Research Corp.) ;
  • Ho-Jun Yoo (Department of Coastal Management, GeoSystem Research Corp.) ;
  • Ki-Hyun Kim (Department of Coastal Management, GeoSystem Research Corp.)
  • Received : 2024.07.28
  • Accepted : 2024.09.30
  • Published : 2024.10.31

Abstract

Due to climate change, waves have become increasingly stronger, making the analysis of beach changes before and after typhoons crucial for addressing beach erosion. This study utilized low-cost, high-efficiency video monitoring to analyze beach changes at 14 locations along Korea's east coast before and after typhoon impacts. Shorelines were extracted from 180 s average orthoimages using the Pixel Intensity Moving Average Extraction technique, and beach areas were calculated. The study focused on the recovery period following typhoon-induced erosion. During Typhoon Goni (2015), erosion reached up to 38% at Bongpo Beach, with a maximum affected area of 7,741 m2 at Goraebul Beach. Post-typhoon recovery exceeded 89%, with most beaches returning to pre-typhoon conditions. The erosion period averaged 7 d, while recovery took approximately 27 d. Erosion was significantly influenced by natural forces such as waves, tides, and wind. The erosion period showed minimal correlation with wave energy, whereas the recovery period exhibited some correlation. Further long-term analysis, incorporating additional wave data and typhoon impact periods, is needed. Future research will aim to collect extensive typhoon data to systematically analyze erosion and recovery cycles in relation to external forces.

Keywords

Acknowledgement

The authors gratefully appreciated the Korea Institute of Marine Science and Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (RS-2023-00256687).

References

  1. Ahn, K. W., Lee, H. S., & Kim, D. J. (2011). DEM generation of tidal flat in Suncheon Bay using digital aerial images. Korean Journal of Remote Sensing, 27(4), 411-420. https://doi.org/10.7780/kjrs.2011.27.4.411
  2. Angnuureng, D. B., Brempong, K. E., Jayson-Quashigah, P. N., Dada, O. A., Akuoko, S. G. I., Frimpomaa, J., Mattah, P. A., & Almar, R. (2022). Satellite, drone and video camera multi-platform monitoring of coastal erosion at an engineered pocket beach: A showcase for coastal management at Elmina Bay, Ghana (West Africa). Regional Studies in Marine Science, 53, 102437. https://doi.org/10.1016/j.rsma.2022.102437
  3. Bister, M., & Emanuel, K. A. (2002). Low frequency variability of tropical cyclone potential intensity. 1. Interannual to interdecadal variability, Journal of Geophysical Research: Atmospheres, 107(D24), ACL 26-1-ACL 26-15. https://doi.org/10.1029/2001JD000776
  4. Cho, J. W., Lim, D. I., & Kim, B. O. (2001). Observation of shoreline change using an aerial photograph in Hampyung Bay, Southwestern Coast of Korea. Journal of the Korean earth science society, 22(4), 317-326.
  5. Cooper, J. A. G., & Pilkey, O. H. (2004). Sea-level rise and shoreline retreat: Time to abandon the Bruun Rule. Global and Planetary Change, 43, 157-171. https://doi.org/10.1016/j.gloplacha.2004.07.001
  6. Eom, J. A., Choi, J. K., Ryu, J. H., & Won, J. S. (2010). Monitoring of shoreline change using satellite imagery and aerial photograph: for the Jukbyeon, Uljin. Korean Journal of Remote Sensing, 26(5), 571-580. https://doi.org/10.7780/kjrs.2010.26.5.571
  7. Holland, K. T., Holman, R. A., Lippmann, T. C., Stanley, J., & Plant, N. (1997). Practical use of video imagery in nearshore oceanographic field studies. IEEE Journal of oceanic engineering, 22(1), 81-92. https://doi.org/10.1109/48.557542
  8. Holman, R. A. (1981). Infragravity energy in the surf zone. Journal of Geophysical Research, 86(C7), 6442-6450. https://doi.org/10.1029/JC086iC07p06442
  9. Holman, R. A., Sallenger, A. H., Lippmann, T. C., & Haines, J. W. (1993). The application of video image processing to the study of nearshore processes. Oceanography, 6(3), 78-85. http://www.jstor.org/stable/43924648
  10. Holman, R. A., & Stanley, J. (2007). The history and technical capabilities of Argus. Coastal Engineering, 54(6-7), 477-491. https://doi.org/10.1016/j.coastaleng.2007.01.003
  11. Hwang, C. S., Choi, C. U., & Choi, J. S. (2014). Shoreline changes interpreted from multi-temporal aerial photographs and high resolution satellite images. A case study in Jinha Beach. Korean Journal of Remote Sensing, 30(5), 607-616. https://doi.org/10.7780/kjrs.2014.30.5.6
  12. Jackson, N. L., Nordstrom, K. F., Eliot, I., & Masselink, G. (2002). 'Low energy' sandy beaches in marine and estuarine environments: a review. Geomorphology 48, 147-162. https://doi.org/10.1016/S0169-555X(02)00179-4
  13. Kim, T. K., Lim, C., & Lee, J. L. (2021). Vulnerability analysis of episodic beach erosion by applying storm wave scenarios to a shoreline response model. Frontiers in Marine Science, 8, 759067. https://doi.org/10.3389/fmars.2021.759067
  14. Kang, T. S., Kim, J. B., Kim, G. Y., Kim, J. K., & Hwang, C. S. (2017). Variation characteristics of Haeundae Beach using video image. Journal of Ocean Engineering and Technology 31(1), 60-68. https://doi.org/10.5574/KSOE.2017.31.1.060
  15. Kang, T.S. (2020). Climate change and coastal disasters. 11th Coastal Forum.
  16. Kang, T.S., Kim, K.H., Nam, S.Y. and Hwang, C.S., 2009. The characteristics of Haeundae Beach morphodynamics using video monitoring method. Proceedings of the Korean Society of Marine Engineering, 347-348.
  17. Kang, T. S., Nam, S. Y., Kim, M. H., & Baek, K. K. (2007). Study on characteristics of coastal erosion status using real-time video monitoring technique. Magazine of Korean Society of Hazard Mitigation, 7(1), pp. 47-56.
  18. Kim, I. H., & Song, D. S. (2012). Investigation of coastal erosion status in Geojin Port area. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 30(1), pp. 67-73. https://doi.org/10.7848/ksgpc.2012.30.1.067
  19. Kim, J. B. (2014). Apparatus for extracting coastline automatically using image pixel information and image pixel information change pattern by moving variance and the method thereof (Patent No. 10-1480173). The Korean Intellectual Property Office. https://doi.org/10.8080/1020140087654
  20. Kim, T. R. (2016). South/Jeju Coast Beach erosion analysis using camera monitoring data. Journal of the Korean Geomorphological Association, 23(1), 129-140.
  21. Kim, T. R., & Kim, D. S. (2014). Benefits of camera monitoring system in studying on coastal dune erosion by typhoon. Journal of the Korean Geomorphological Association, 21(4), 41-52.
  22. Kim, Y. S., & Lee, J. O. (2007). Qualitative analysis of coast topographic using RTK-GPS. Journal of the Korea Society for Geospatial Information Science, 15(2), 77-85.
  23. Lee, C., Do, K., Kim, I., & Chang, S. (2024). GCP placement methods for improving the accuracy of shoreline extraction in coastal video monitoring. Journal of Ocean Engineeing and Technol, 38(4), 174 -186. https://doi.org/10.26748/KSOE.2024.055
  24. Lee, S. J., Lee, G. H., Kang, T. S., Kim, Y. T., & Kim, T. L. (2015). Monitoring of tidal sand shoal with a camera monitoring system and its morphologic change. Journal of the Korean Society of Marine Engineering, 39(3), 326-333. https://doi.org/10.5916/jkosme.2015.39.3.326
  25. Lim, C., Kim, T. K., Kim, J. B., & Lee, J. L. (2022). A study on the influence of sand median grain size on the short-term recovery process of shorelines. Frontiers in Marine Science, 9, 906209. https://doi.org/10.3389/fmars.2022.906209.
  26. Lippmann, T. C., & Holman, R. A. (1989). Quantification of sand bar morphology: A video technique based on wave dissipation. Journal of Geophysical Research, 94(C1), 995-1011. https://doi.org/10.1029/JC094iC01p00995
  27. Luijendijk, A., Hagenaars, G., Ranasinghe, R., Baart, F., Donchyts, G., & Aarninkhof, S. (2018). The state of the world's beaches. Scientific Report, 8, 6641. https://doi.org/10.1038/s41598-018-24630-6
  28. Ministry of Oceans and Fisheries (MOF). (2015). Coastal Erosion Monitoring Survey in 2015.
  29. Ministry of Oceans and Fisheries (MOF). (2022). Coastal Erosion Monitoring Survey in 2022.
  30. Ministry of Oceans and Fisheries (MOF). (2019). Practical manual for Coastal Maintenance Project.
  31. Plant, N. G., & Holman, R. A. (1997). Intertidal beach profile estimation using video images. Marine Geology, 140(1-2), 1-24. https://doi.org/10.1016/S0025-3227(97)00019-4
  32. Seol, D.I. (2007). Relations between variation of sea surface temperatures in the South Sea of Korea and intensity of typhoons. Journal of Navigation and Port research, 32(5), 403-407. https://doi.org/10.5394/KINPR.2008.32.5.403
  33. Song, K. S., & Ha, M. B. (2007). SUPER 태풍에 대비한 재난 대책 [Disaster measures for super typhoon]. Korean Society of Road Engineers, 9(3), 106-114. https://db.koreascholar.com/Article/Detail/249203
  34. Sujivakand, J., Sameera, S., Avishka, M. S., & Damsara, R. A. (2023). Unmanned aerial vehicles (UAVs) for coastal protection assessment: A study of detached breakwater and groins at marawila beach, Sri Lanka. Regional Studies in Marine Science, 69, 103282. https://doi.org/10.1016/j.rsma.2023.103282
  35. Shi, Q., Cai, A., & Qi, H. (2019). Sandy coast erosion under the conditions of a storm surge combined with a spring tide. IOP Conference Series: Earth and Environmental Science. 369, 012002. https://doi.org/10.1088/1755-1315/369/1/012002
  36. Thuan, D. H., Binh, L., Viat, N. T., Hanh, D. K., Almar, R., & Marchesiello, P. (2016). Typhoon impact and recovery from continuous video monitoring: a case study from Nha Trang Beach, Vietnam. Journal of Coastal Research, 75(S1), 263-267. https://doi.org/10.2112/SI75-053.1
  37. Vos, K., Splinter, K. D., Harley, M. D., Simmons, J. A., & Turner, I. L. (2019). CoastSat: A Google Earth Engine-enabled Python toolkit to extract shorelines from publicly available satellite imagery. Environmental Modelling & Software,122, 104528. https://doi.org/10.1016/j.envsoft.2019.104528
  38. Vos, K., Splinter, K. D., Palomar-Vazquez, J., Pardo-Pascual, J. E., Almonacid-Caballer, J., Cabezas-Rabadan, C., Kras, E. C., Luijendijk, A. P., Calkoen, F., Almeida, L. P., Pais, D., Klein, A. H. F., Mao, Y., Harris, D., Castelle, B., Buscombe, D., & Vitousek, S. (2023). Benchmarking satellite-derived shoreline mapping algorithms. Commun Earth Environ, 4, 345. https://doi.org/10.1038/s43247-023-01001-2
  39. Yoo, H. J., Kim, H., Lee, J. L., & Park, J. Y. (2021). Asymmetry between accretional advance and erosional retreat of shoreline position in on-offshore direction. Journal of Coastal Research, 114(SI), 6-10. https://doi.org/10.2112/JCR-SI114-002.1
  40. Yoon, J. J., Jun, K .C., Shim, J. S., & Park, K. S. (2012). Estimation of maximum typhoon intensity considering climate change scenarios and simulation of corresponding storm surge. Journal of the Korean Society for Marine Environmental Engineering. 15(4). 292-301. https://doi.org/10.7846/JKOSMEE.2012.15.4.292