DOI QR코드

DOI QR Code

Therapeutic Potential of Lactiplantibacillus plantarum FB091 in Alleviating Alcohol-Induced Liver Disease through Gut-Liver Axis

  • Soo-Jeong Lee (Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University) ;
  • Jihye Yang (Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University) ;
  • Gi Beom Keum (Department of Animal Biotechnology, Dankook University) ;
  • Jinok Kwak (Department of Animal Biotechnology, Dankook University) ;
  • Hyunok Doo (Department of Animal Biotechnology, Dankook University) ;
  • Sungwoo Choi (Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University) ;
  • Dong-Geun Park (Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University) ;
  • Chul-Hong Kim (Binggrae Company) ;
  • Hyeun Bum Kim (Department of Animal Biotechnology, Dankook University) ;
  • Ju-Hoon Lee (Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University)
  • Received : 2024.07.26
  • Accepted : 2024.07.30
  • Published : 2024.10.28

Abstract

Alcoholic liver disease (ALD) poses a significant global health burden, often requiring liver transplantation and resulting in fatalities. Current treatments, like corticosteroids, effectively reduce inflammation but carry significant immunosuppressive risks. This study evaluates Lactiplantibacillus plantarum FB091, a newly isolated probiotic strain, as a safer alternative for ALD treatment. Using an in vivo mouse model, we assessed the effects of L. plantarum FB091 on alcohol-induced liver damage and gut microbiota composition. Alcohol and probiotics administration did not significantly impact water/feed intake or body weight. Histopathological analysis showed that L. plantarum FB091 reduced hepatocellular ballooning and inflammatory cell infiltration in liver tissues and mitigated structural damage in colon tissues, demonstrating protective effects against alcohol-induced damage. Biomarker analysis indicated that L. plantarum FB091 decreased aspartate aminotransferase levels, suggesting reduced liver damage, and increased alcohol dehydrogenase activity, indicating enhanced alcohol metabolism. Additionally, cytokine assays revealed a reduction in pro-inflammatory TNF-α and an increase in anti-inflammatory IL-10 levels in colon tissues of the L. plantarum FB091 group, suggesting an anti- inflammatory effect. Gut microbiota analysis showed changes in the L. plantarum FB091 group, including a reduction in Cyanobacteria and an increase in beneficial bacteria such as Akkermansia and Lactobacillus. These changes correlated with the recovery and protection of liver and colon health. Overall, L. plantarum FB091 shows potential as a therapeutic probiotic for managing ALD through its protective effects on liver and colon tissues, enhancement of alcohol metabolism, and beneficial modulation of gut microbiota. Further clinical studies are warranted to confirm these findings in humans.

Keywords

Acknowledgement

This research was supported by the Food Research Center, Binggrae, Co., Ltd., the Bio&Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean government (MSIT) (Project No. 2022M3A9I5018286), and the Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ015865), Rural Development Administration, South Korea.

References

  1. Morojele NK, Shenoi SV, Shuper PA, Braithwaite RS, Rehm J. 2021. Alcohol use and the risk of communicable diseases. Nutrients 13: 3317.
  2. Im PK, Wright N, Yang L, Chan KH, Chen Y, Guo Y, et al. 2023. Alcohol consumption and risks of more than 200 diseases in Chinese men. Nat. Med. 29: 1476-1486.
  3. Millwood IY, Im PK, Bennett D, Hariri P, Yang L, Du H, et al. 2023. Alcohol intake and cause-specific mortality: conventional and genetic evidence in a prospective cohort study of 512,000 adults in China. Public Health 12: E956-957.
  4. Parry C, Patra J, Rehm J. 2012. Alcohol consumption and non-conmmunicable diseases: epidemiology and policy implications. Addiction 106:1718-1724.
  5. Maher JJ. 1997. Exploring alcohol's effects on liver function. Alcohol Health Res. World 21: 5-12.
  6. Osna NA, Donohue Jr. TM, Kharbanda KK. 2017. Alcoholic liver disease: pathogenesis and current management. Alcohol Res. 38: 147-161.
  7. Cholankeril G, Ahmed A. 2018. Alcoholic liver disease replaces hepatitis C virus infection and the leading indication for liver transplantation in the United States. Clin. Gastroenterol. Hepatol. 16: 1356-1358.
  8. Pimpin L, Cortez-Pinto H, Negro F, Corbould E, Lazarus JV, Webber L. 2018. Burden of liver disease in Europe: epidemiology and analysis of risk factors to identify prevention policies. J. Hepatol. 69: 718-735.
  9. Maddur H. 2021. Current therapies for alcohol-associated hepatitis. Clin. Liver Dis. 25: 595-602.
  10. Louvet A, Naveau S, Abdelnour M, Ramond MJ, Diaz E, Fartoux L, et al. 2007. Hepatology 45: 1348-1354.
  11. Chaudhry H, Sohal A, Iqbal H, Roytman M. 2023. Alcohol-related hepatitis: a review article. World J. Gastroenterol. 29: 2551-2570.
  12. Louvet A, Wartel F, Castel H, Dharancy S, Hollebecque A, Canva-Delcambre V, et al. 2009. Infection in patients with severe alcoholic hepatitis treated with steroids: early response to therapy is the key factor. Gastroenterology 137: 541-548.
  13. Asai N, Fonseca W, Yagi K, Ethridge AD, Morris SH, Rasky AJ, et al. 2022. Corticosteroids treatment alters lung and gut microbiome communities that correlates to increased pathologic immune response. J. Immunol. 208: 50.08-50.08.
  14. Zhang J, Feng D, Law HKW, Wu Y, Zhu GH, Huang WY, et al. 2021. Integrative analysis of gut microbiota and fecal metabolites in rats after prednisone treatment. Microbiol. Spectr. 9: e00650-21.
  15. Dixon WG, Abrahamowicz M, Beaychamp ME, Ray DW, Bernatsky S, Suissa S, et al. 2012. Immediate and delayed impact of oral glucocorticoid therapy on risk of serious infection in older patients with rheumatoid arthritis: a nested case-control analysis. Ann. Rheum. Dis. 71: 1128-1233.
  16. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. 2014. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11: 506-514.
  17. Hemarajata P, Versalovic J. 2013. Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Therap. Adv. Gastroenterol. 6: 39-51.
  18. Maftei NM, Raileanu CR, Balta AA, Ambrose L, Boev M, Marin DB, et al. 2024. The potential impact of probiotics on human health: an update on their health-promoting properties. Microorganisms 12: 234.
  19. Zheng Z, Wang B. 2021. The gut-liver axis in health and disease: the role of gut microbiota-derived signals in liver injury and regeneration. Front. Immunol. 12: 7755226.
  20. Hong M, Kim SW, Han SH, Kim DJ, Suk KT, Kim YS, et al. 2015. Probiotics (Lactobacillus rhamnosus R0011 and acidophilus R0052) reduce the expression of toll-like receptor 4 in mice with alcoholic liver disease. PLoS One 10: e9117451.
  21. Tian F, Chi F, Wang G, Liu X, Zhang Q, Chen Y, et al. 2015. Lactobacillus rhamnosus CCFM1107 treatment ameliorates alcohol-induced liver injury in a mouse model of chronic alcohol feeding. J. Microbiol. 53: 856-863.
  22. Xiong SY, Wu GS, Li C, Ma W, Lou HR. 2024. Clinical efficacy of probiotics in the treatment of alcoholic liver disease: a systematic review and meta-analysis. Front. Cell. Infect. Microbiol. 14: 1358063.
  23. Li H, Shi J, Zhao L, Guan J, Liu F, Huo G, et al. 2021. Lactobacillus plantarum KLDS1.0344 and Lactobacillus acidophilus KLDS1.0901 mixture prevents chronic alcoholic liver injury in mice by protecting the intestinal barrier and regulating gut microbiota and liver-related pathways. J. Agric. Food Chem. 69: 183-197.
  24. Kim WG, Kim HI, Kwon EK, Han MJ, Kim DH. 2018. Lactobacillus plantarum LC27 and Bifidobacterium longum LC67 mitigate alcoholic steatosis in mice by inhibiting LPS-mediated NF-kB activation through restoration of the distributed gut microbiota. Food Funct. 9: 4255-4265.
  25. Huang H, Lin Z, Zeng Y, Lin X, Zhang Y. 2019. Probiotic and glutamine treatments attenuate alcoholic liver disease in a rat model. Exp. Ther. Med. 16: 4733-4739.
  26. Chayanupatkul M, Somanawat K, Chuaypen N, Klaikeaw N, Wanpiyarat N, Siriviriyakul P, et al. 2022. Probiotics and their beneficial effects on alcohol-induced liver injury in a rat model: the role of fecal microbiota. BC Complement. Med. Ther. 22: 168.
  27. Wang Y, Liu Y, Kirpich I, Ma Z, Wang C, Zhang M, et al. 2013. Lactobacillus rhamnosus GG reduces hepatic TNFα production and inflammation in chronic alcohol-induced liver injury. J. Nutr. Biochem. 24: 1609-1615.
  28. Bull-Otterson L, Feng W, Kirpich I, Wang Y, Qin X, Liu Y, et al. 2013. Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome and the effect of Lactobacillus rhamnosus GG treatment. PLoS One 8: e53028.
  29. Wick RR, Judd LM, Holt KE. 2019. Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biol. 20: 129.
  30. Smith A. qcat: a tool for demultiplexing nanopore reads. 2019. Available from: https://github.com/nanoporetech/qcat
  31. Curry KD, Wang Q, Nute MG, Tyshaieva A, Reeves E, Soriano S, et al. 2022. Emu: species-level microbial community profiling for full-length nanopore 16S reads. Nat. Methods 19: 845-583.
  32. Stoddard SF, Smith BJ, Hein R, Roller BRK, Schmidt TM. 2015. rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res. 43: D593-598.
  33. O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. 2016. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44: D733-745.
  34. Li H. 2018. Minimap2: pairwias alignment for nucleotide sequences. Bioinformatics 34: 3094-3100.
  35. Wickham H. 2016. ggplot2: Elegant graphics for data analysis. Springer-Verlag New York.
  36. Hernandez BY, Zhu X, Risch HA, Lu L, Ma X, Irwin ML, et al. 2022. Oral Cyanobacteria and hepatocellular carcinoma. Cancer Epidemiol. Biomarkers Prev. 31: 221-229.
  37. Li T, Fan X, Cai M, Jiang Y, Wang Y, He P, et al. 2023. Advances in investigating microcystin-induced liver toxicity and underlying mechanisms. Sci. Total Environ. 905: 167167.
  38. Soo RM, Woodcroft BJ, Parks DH, Tyson GW, Hugenholtz P. 2015. Back from the dead; the curious tale of the predatory cyanobacterium Vampirovibrio chlorellavorus. PeerJ. 3: e968.
  39. Caballero JD, Vida R, Cobo M, Maiz L, Suarez L, Galeano J, et al. 2017. Individual patterns of complexity in cystic fibrosis lung microbiota, including predator bacteria, over a 1-year period. mBio 8: 10.1128. 10
  40. Shen M, Zhao H, Han M, Su L, Cui X, Li D, et al. 2024. Alcohol-induced gut microbiome dysbiosis enhances the colonization of Klebsiella pneumoniae on the mouse intestinal tract. mSyetems 9: e00052-24.
  41. Cho YE, Kim DK, Seo W, Gao B, Yoo SH, Song BJ. 2021. Fructose promotes leaky gut, endotoxemia, and liver fibrosis through ethanol-inducible cytochrome P450-2E1-Mediated oxidative and nitrative stress. Hepatology 73: 2180-2195.
  42. Zhong X, Cui P, Jiang J, Ning C, Liang B, Zhou J, et al. 2021. Streptococcus, the predominant bacterium to predict the severity of liver injury in alcoholic liver disease. Front. Cell. Infect. Microbiol. 11: 649060.
  43. Guo M, Lu M, Chen K, Xu R, Xia Y, Liu X, et al. 2023. Akkermansia muciniphila and Lactobacillus plantarum ameliorate systemic lupus erythematosus by possibly regulating immune response and remodeling gut microbiota. mSphere 8: e0007023.
  44. Dempsey E, Corr SC. 2022. Lactobacillus spp. for gastrointestinal health: current and future perspectives. Front. Immunol. 13: 840245.
  45. Tsai YS, Ln SW, Chen YL, Chen CC. 2020. Effect of probiotics Lactobacillus paracasei GKS6, L. plantarum GKM3, and L. rhamnosus GKLC1 on alleviating alcohol-induced alcoholic liver disease in a mouse model. Nutr. Res. Pract. 14: 299-308.
  46. Albillos A, de Gottardi A, Rescigno M. 2020. The gut-liver axis in liver disease: pathophysiological basis for therapy. J. Hepatol. 72: 558-577.
  47. Kukuk GM, Schaefer SG, Fimmers R, Hadizadeh DR, Ezziddin S, Spengler U, et al. 2014. Hepatobiliary magnetic resonance imaging in patients with liver disease: correlation of liver enhancement with biochemical liver function tests. Eur. Radiol. 24: 2482-90.
  48. Bode C, Bode JC. 2005. Activation of the innate immune system and alcoholic liver disease: effects of ethanol per se or enhanced intestinal translocation of bacterial toxins induced by ethanol? Alcohol Clin. Exp. Res. 29: 166S-71S.
  49. Setshedi M, Wands JR, Monte SM. 2010. Acetaldehyde adducts in alcoholic liver disease. Oxid Med. Cell Longev. 3: 178-185.
  50. Alvarez CI, Beecher K, Chehrehasa F, Belmer A, Bartlett SE. 2020. Tumor necrosis factor in neuroplasticity, neurogenesis and alcohol use disorder. Brain Plast. 6: 47-66.
  51. Kawaratani H, Tsujimoto T, Douhara A, Takaya H, Moriya K, Namisaki T, et al. 2013. The effect of inflammatory cytokines in alcoholic liver disease. Mediators Inflamm. 2013: 495156.
  52. Zhang F, Lee J, Liang S, Shum CK. 2015. Cyanobacteria blooms and non-alcoholic liver disease: evidence from a county level ecological study in the United States. Environ. Health 14: 41.
  53. Guo M, Lu M, Chen K, Xu R, Xia Y, Liu X, et al. 2023. Akkermansia muciniphila and Lactobacillus plantarum ameliorate systemic lupus erythematosus by possibly regulating immune response and remodeling gut microbiota. mSphere 8: e0007023.
  54. Jun JB. 2018. Klebsiella pneumoniae liver abscess. Infect. Chemother. 50: 210-218.
  55. Gonzlez-Quintela A, Martinez-Rey C, Castroagudin JF, Rajo-Iglesias MC, Dominguez-Santalla MJ. 2001. Prevalence of liver disease in patients with Streptococcus bovis bacteraemia. J. Infect. 42: 116-119.