DOI QR코드

DOI QR Code

Analysis of the Improvement of Photoelectrical Properties of Cu2ZnSn(S,Se)4 Thin Film and Solar Cells V ia Cation Doping

양이온 도핑을 통한 Cu2ZnSn(S,Se)4 박막의 광전기적 특성 향상 및 이를 적용시킨 박막 태양전지의 효율 향상 분석

  • Youngrog Kim (Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University) ;
  • Suyoung Jang (Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University) ;
  • Jun Sung Jang (Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University) ;
  • Dong Hyun Kang (Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University) ;
  • Jin Hyeok Kim (Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University)
  • 김영록 (전남대학교 광전자융합기술연구소 신소재공학과) ;
  • 장수영 (전남대학교 광전자융합기술연구소 신소재공학과) ;
  • 장준성 (전남대학교 광전자융합기술연구소 신소재공학과) ;
  • 강동현 (전남대학교 광전자융합기술연구소 신소재공학과) ;
  • 김진혁 (전남대학교 광전자융합기술연구소 신소재공학과)
  • Received : 2024.08.22
  • Accepted : 2024.10.08
  • Published : 2024.10.27

Abstract

Solar energy has been recognized as an alternative energy source that can help address fuel depletion and climate change issues. As a renewable energy alternative to fossil fuels, it is an eco-friendly and unlimited energy source. Among solar cells, thin film Cu2ZnSn(S,Se)4 (CZTSSe) is currently being actively studied as an alternative to heavily commercialized Cu(In,Ga)Se2 (CIGS) thin film solar cells, which rely upon costly and scarce indium and gallium. Currently, the highest efficiency achieved by CZTSSe cells is 14.9 %, lower than the CIGS record of 23.35 %. When applied to devices, CZTSSe thin films perform poorly compared to other materials due to problems including lattice defects, conduction band offset, secondary phase information, and narrow stable phase regions, so improving their performance is essential. Research into ways of improving performance by doping with Germanium and Cadmium is underway. Specifically, Ge can be doped into CZTSSe, replacing Sn to reduce pinholes and bulk recombination. Additionally, partially replacing Zn with Cd can facilitate grain growth and suppress secondary phase formation. In this study, we analyzed the device's performance after doping Ge into CZTSSe thin film using evaporation, and doping Cd using chemical bath deposition. The Ge doped thin film showed a larger bandgap than the undoped reference thin film, achieving the highest Voc of 494 mV in the device. The Cd doped thin film showed a smaller bandgap than the undoped reference thin film, with the highest Jsc of 36.9 mA/cm2. As a result, the thin film solar cells achieved a power conversion efficiency of 10.84 %, representing a 20 % improvement in power conversion efficiency compared to the undoped reference device.

Keywords

Acknowledgement

This work was supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2018R1A6A1A03024334) and partially supported by Basic Science Research Capacity Enhancement Project through Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education (No. 2019R1A6C1010024).

References

  1. K. Ramasamy, M. A. Malik and P. O'Brien, Chem. Commun., 48, 5703 (2012).
  2. W. Shockley and H. J. Queisser, J. Appl. Phys., 32, 510 (1961).
  3. M. Kumar, A. Dubey, N. Adhikari, S. Venkatesan and Q. Qiao, Energy Environ. Sci., 8, 3134 (2015).
  4. A. Ashfaq, J. Jacob, N. Bano, M. A. U. Nabi, A. Ali, W. Ahmad, K. Mahmood, M. I. Arshad, S. Ikram, U. Rehman, N. Amin and S. Hussain, Ceram. Int., 45, 10876 (2019).
  5. S. Lie, J. M. R. Tan, W. Li, S. W. Leow, Y. F. Tay, D. M. Bishop, O. Gunawan and L. H. Wong, J. Mater. Chem. A, 6, 1540 (2018).
  6. J. Li, S. Y. Kim, D. Nam, X. Liu, J. H. Kim, H. Cheong, W. Liu, H. Li, Y. Sun and Y. Zhang, Sol. Energy Mater. Sol. Cells., 159, 447 (2017).
  7. J. Li, Y. Zhang, W. Zhao, D. Nam, H. Cheong, L. Wu, Z. Zhou and Y. Sun, Adv. Energy Mater., 5, 1402178 (2015).
  8. M. Moustafa, T. AlZoubi, S. Yasin, Z. A. Waar and A. Moghrabi, J. Phys.: Conf. Ser., 2022, 012022 (2021).
  9. R. B. Little, M. A. El-Sayed, G. W. Bryant and S. Burke, J. Chem. Phys., 114, 1813 (2001).
  10. J. Cong, M. He, J. S. Jang, J. Huang, K. Privat, Y. S. Chen, J. Li, L. Yang, M. A. Green, J. H. Kim, J. M. Cairney and X. Hao, Adv. Sci., 11, 2305938 (2024).
  11. Y. Deng, Z. Zhou, X. Zhang, L. Cao, W. Zhou, D. Kou, Y. Qi, S. Yuan, Z. Zheng and S. Wu, J. Energy Chem., 61, 1 (2021).
  12. H. Luan, B. Yao, Y. Li, R. Liu, Z. Ding, Z. Zhang, H. Zhao and L. Zhang, J. Alloys Compd., 876, 160160 (2021).
  13. X. Lv, C. Zhu, Y. Wang, L. Wang and J. Shi, J. Alloys Compd., 874, 159898 (2021).
  14. R. Ma, F. Yang, S. Li, X. Zhang, X. Li, S. Cheng and Z. Liu, Appl. Surf. Sci., 368, 8 (2016).
  15. P. Delporte, F. Meunier, C. Pham-Huu, P. Vennegues, M. J. Ledoux and J. Guille, Catal. Today, 23, 251 (1995).
  16. V. C. Karade, M. P. Suryawanshi, J. S. Jang, K. S. Gour, S. Jang, J. Park, J. H. Kim and S. W. Shin, J. Mater. Chem. A, 10, 8466 (2022).
  17. R. B. V. Chalapathy, M. G. Gang, C. W. Hong, J. H. Kim, J. S. Jang, J. H. Yun and J. H. Kim, Solar Energy, 159, 260 (2018).
  18. M. He, J. Huang, J. Li, J. S. Jang, U. P. Suryawanshi, C. Yan, K. Sun, J. Cong, Y. Zhang, H. Kampwerth, M. P. Suryawanshi, J. Kim, M. A. Green and X. Hao, Adv. Funct. Mater., 31, 2104528 (2021).
  19. M. C. Baek, J. S. Jang, V. C. Karade, M. P. Suryawanshi, J. H. Kim, T. E. Hong, S. W. Park, S. W. Shin and J. H. Kim, Chem. Eng. J., 479, 147842 (2024).
  20. T. Maeda, S. Nakamura and T. Wada, Jpn. J. Appl. Phys., 51, 10NC11 (2012).
  21. S. Jang, V. C. Karade, J. S. Jang, E. Jo, H. Shim, S. G. Kim, K. Patil, K. S. Gour and J. H. Kim, J. Alloys Compd., 930, 167302 (2023).