DOI QR코드

DOI QR Code

Structural and Electrical Properties of Al-Co(Al-N)/AlN-Co Multilayer Films Prepared by Two-Facing-Target Type Sputtering System

대향 타겟형 스퍼터링 시스템으로 제작한 Al-Co(Al-N)/AlN-Co 다층 박막의 구조 및 전기적 특성

  • Chang-Suk Han (Department of ICT Automotive Engineering, Hoseo University) ;
  • Chang-Hwan Bae (Department of Information & Communication Engineering, Hoseo University)
  • 한창석 (호서대학교 자동차ICT공학과) ;
  • 배창환 (호서대학교 정보통신공학과)
  • Received : 2024.08.22
  • Accepted : 2024.09.30
  • Published : 2024.10.27

Abstract

High-frequency soft magnetic Ni, Fe, and Co-based thin films have been developed, typically as nanocrystals and amorphous alloys. These Ni, Fe, and Co-based thin films exhibit remarkably good frequency dependence up to high frequencies of several tens of MHz. These properties arise from the moderate magnetic anisotropy and fairly high electrical resistivity that result from the microstructural characteristics of the nanocrystalline and amorphous states. In this paper, Al-Co/AlN-Co and Al-N/AlN-Co multilayer films were deposited using two-facing-target type sputtering (TFTS). Their microstructures, magnetic and electrical properties were studied with the expectation that inserting Al-Co or Al-N as an interlayer could effectively reduce the coercive force and produce films with relatively high resistivity. A new approach is presented for the fabrication of Al-Co (Al-N)/AlN-Co multilayer films, prepared with the TFTS system. The deposited films were isothermally annealed at different temperatures and investigated for microstructure, magnetic properties and resistivity. The TFTS method used in this experiment is suitable for fabricating Al-Co(Al-N)/AlN-Co multilayer films with different layer thickness ratio (LTR). The annealing conditions, thickness of the multilayer film, and LTR can control the physical properties as well as the microstructure of the manufactured film. Magnetization and resistance increased and coercivity decreased as LTR decreased. The thin film with LTR = 0.175 exhibited high resistivity values of 2,500 µΩ-cm, magnetization of 360 emu/cm3, and coercivity of 5 Oe. Results suggests that thin films with such good resistivity and magnetization would be useful as high-density recording materials.

Keywords

References

  1. M. Yang, C. Feng, N. Ji, H. Wang, Y. Jiang, G. H. Yu and J. P. Wang, Mater. Lett., 115, 103 (2014).
  2. M. Mebarki, A. Layadi, A. Guittoum, A. Benabbas, B. Ghebouli, M. Saad and N. Menni, Appl. Surf. Sci., 257, 7025 (2011).
  3. M. J. M. Pires, W. A. A. Macedo, L. P. Cavalcanti and A. M. G. Carvalho, J. Phys. Chem. Solids, 86, 36 (2015).
  4. Y. M. Hwang, C. T. Pan, Y. X. Lu, S. R. Jian, H. W. Chang and J. Y. Juang, Micromachines, 11, 180 (2020).
  5. M. A. Al Asad, M. A. I. Nahid and M. M. Rahman, Emerging Mater. Res., 4, 164 (2015).
  6. X. Liu, S. Shirasath and K. Shindoh, IEEE Trans. Magn., 51, 2200304 (2015).
  7. J. Shi, Z. H. Cao, M. Z. Wei, G. J. Pan, L. J. Xu and X. K. Meng, Mater. Sci. Eng., A, 623, 104 (2015).
  8. F. Guangyan, Q. Zeyan, C. Jingyu, L. Qun and S. Yong, Rare Met. Mater. Eng., 44, 1112 (2015).
  9. M. Danisman, Mater. Test., 64, 1270 (2022).
  10. M. Volmer and J. Neamtu, J. Magn. Magn. Mater., 322, 1631 (2010).
  11. A. V. Trukhanov, S. S. Grabchikov, A. A. Solobai, D. I. Tishkevich, S. V. Trukhanov and E. L. Trukhanova, J. Magn. Magn. Mater., 443, 142 (2017).
  12. G. Loizos, G. Giannopoulos, C. Serletis, T. Maity, S. Roy, N. Lupu, H. Kijima, M. Yamaguchi and D. Niarchos, Phys. Procedia, 75, 1096 (2015).
  13. F. Wang, F. Guo, Y. Xue, H. Luo and J. Zhu, J. Coat. Technol. Res., 18, 489 (2021).
  14. M. A. Z. Vasconcellos, R. Hinrichs, A. M. H. de Andrade, J. B. M. da Cunha and I. J. R. Baumvol, Surf. Coat. Technol., 392, 125753 (2020).
  15. M. R. Kim, S. I. Kim, K. S. Kim, K. Y. Sohn and W. W. Park, Met. Mater. Int., 18, 185 (2012).
  16. S. M. Kim, S. J. Lee, J. J. Lee and W. Y. Jeung, Met. Mater. Int., 18, 527 (2012).
  17. K. S. Sin, C. T. Wang, S. X. Wang and B. M. Clemens, J. Appl. Phys., 81, 4507 (1997).
  18. M. Sakamaki and K. Amemiya, Appl. Phys. Express, 4, 073002 (2011).
  19. C. S. Han, J. Korean Soc. Heat Treat., 21, 3 (2008).
  20. S. O. Han and C. S. Han, J. Korean Soc. Heat Treat., 23, 69 (2010).
  21. C. S. Han and S. O. Han, J. Korean Soc. Heat Treat., 23, 331 (2010).
  22. C. H. Bae, S. O. Han and C. S. Han, Korean J. Met. Mater., 48, 268 (2010).
  23. C. S. Han and S. O. Han, J. Korean Soc. Heat Treat., 24, 16 (2011).
  24. C. S. Oh and C. S. Han, Korean J. Met. Mater., 50, 248 (2012).
  25. C. S. Oh, Y. H. Kim and C. S. Han, Asian J. Chem., 27, 4279 (2015).
  26. C. S. Han and Y. H. Kim, Met. Mater. Int., 20, 153 (2014).
  27. C. S. Han, H. J. Jeong and M. H. Wang, J. Korean Phys. Soc., 84, 134 (2024).
  28. C. S. Han, H. J. Jeong and M. H. Wang, J. Korean Phys. Soc., 84, 538 (2024).
  29. G. Herzer, J. Mater. Eng. Perform., 2, 193 (1993).
  30. R. Alben, J. J. Becker and M. C. Chi, J. Appl. Phys., 49, 1653 (1978).
  31. G. Herzer, IEEE Trans. Magn., 26, 1397 (1990).
  32. F. Pfeiffer and C. Radeloff, J. Magn. Magn. Mater., 19, 190 (1980).
  33. S. Ohnuma, H. Fujimori, N. Yano, S. Furukawa, S. Fujii and T. Matsumoto, J. Magn. Magn. Mater., 126, 556 (1993).