DOI QR코드

DOI QR Code

활석, 질석, 해포석, 사문석 등 석면함유 가능성이 있는 광물 함유 제품의 석면 분석 및 광물학적 특성

Asbestos Analysis and Mineralogical Characterization for Commercial Products Containing Talc, Vermiculite, Sepiolite, and Serpentine

  • 최연주 (전남대학교 지질환경과학과) ;
  • 김유미 (전남대학교 지질환경과학과) ;
  • 김채원 (전남대학교 지질환경과학과) ;
  • 노열 (전남대학교 지질환경과학과)
  • Yeonju Choi (Department of Geological and Environmental Sciences, Chonnam National University) ;
  • Yumi Kim (Department of Geological and Environmental Sciences, Chonnam National University) ;
  • Chaewon Kim (Department of Geological and Environmental Sciences, Chonnam National University) ;
  • Yul Roh (Department of Geological and Environmental Sciences, Chonnam National University)
  • 투고 : 2024.06.26
  • 심사 : 2024.09.25
  • 발행 : 2024.10.29

초록

석면함유가능물질은 석면을 함유할 수 있는 것으로 알려진 광물질로 활석, 질석, 해포석 및 사문석이 포함된다. 현재 국내 석면함유가능물질의 석면허용기준에 따르면 최종적으로 유통되는 제품은 석면 함유량이 0.1% 미만이거나 불검출 되어야만 유통이 가능하도록 규제하고 있다. 그러나 지금까지 국내 석면함유실태 조사는 주로 석면을 함유한 건축자재에 국한되어왔으며, 석면함유가능물질을 원료로 사용한 완제품에 대해서는 거의 보고된 바가 없다. 따라서 이 연구에서는 4 종의 석면함유가능물질(활석, 질석, 해포석 및 사문석) 함유 완제품에 대한 광물학적 분석을 통하여 구성 광물 내의 석면 존재, 함유량, 형태적 특성 등을 조사하고, 석면함유가능물질 함유 제품들의 석면함유실태 및 광물학적 특성을 알아보고자 하였다. 석면함유가능물질 함유 제품으로는 활석 함유 화장품, 질석 함유 배양토 및 비료, 해포석 함유 반려동물 위생용품, 사문석 함유 장신구 등을 포함한 28개의 제품을 선정하여 분석에 이용하였다. 분석 전 모든 시료는 유기물 제거를 위해 약 450℃에서 6시간 회화처리를 하였고, 국내 석면분석법(환경부고시 제2018-23호)에 따라 XRD 및 PLM 분석을 통해 구성광물 및 석면의 광물학적 특성을 조사하였다. 더불어, 미국 FDA의 석면분석법(FDA-2020-N-0025)에 따라 TEM-EDS 분석을 추가적으로 적용하여 섬유상 내지 침상의 백석면 및 각섬석군 석면 광물에 대한 형태 및 화학조성을 파악하였다. 연구결과, 활석 함유 화장품과 해포석 함유 제품에서는 석면 광물이 검출되지는 않았지만 질석 함유 배양토 및 복합비료에서는 악티노라이트 석면(actinolite asbestos)이, 사문석의 장식용 원석에서는 백석면(chrysotile)이 소량(<0.25%) 함유된 것으로 확인되었다. TEM-EDS 분석결과, 활석 함유 화장품에서 0.5 ㎛ 이상의 크기를 가지는 주상·섬유상 입자들이 다수 검출되고, 사문석 함유 악세서리 팔찌에는 길이가 짧은(5 ㎛ 미만) 백석면 입자가 관찰됨에 따라 인체 직접 접촉하는 제품들에 대해서는 EMPs (elongated mineral particles)를 고려한 정밀검사 및 지속적인 모니터링을 통한 관리가 필요할 것으로 판단되었다. 더불어 석면 분석 시 TEM-EDS의 활용은 길이가 짧거나 가느다란 석면 입자에 대한 XRD와 PLM의 검출 한계를 보완할 수 있어 석면의 정밀 분석 및 정확도 향상에 도움이 될 것으로 사료된다.

In Korea, talc, vermiculite, sepiolite, and serpentine were designated as minerals likely to contain asbestos (MLCA) according to the Ministry of Environment (Asbestos Safety Management Act). The asbestos content in commercial products made of MLCA must not exceed 0.1 %. In this study, mineralogical analyses using PLM, XRD, and TEM-EDS were used to characterize the presence, content, and morphological characteristics of asbestos in MLCA-containing commercial products. A total of 28 samples were analyzed, including 18 cosmetics containing talc, 5 fertilizers containing vermiculite, 2 pet sanitary products containing sepiolite, and 3 accessories containing serpentine. All samples were heated at 450 ℃ for 6 hours to remove organic matter prior to XRD and PLM analyses according to the Ministry of Environment guidelines. Additionally, the presence and morphology of elongated mineral particles (EMPs) were investigated using TEM-EDS analysis according to the recently revised asbestos analysis method (FDA-2020-N-0025) by the US FDA. The analyses showed that no asbestos was detected in both talc-containing cosmetics and sepiolite-containing products, but actinolite asbestos was found (<0.25 %) in vermiculite-containing fertilizers and chrysotile was found (<0.25 %) in decorative serpentine stones. In TEM-EDS analysis, multiple columnar/fibrous particles measuring 0.5 ㎛ or more in length were observed in talc-containing products, and short chrysotile fibers were observed in bracelets containing serpentine. Therefore, these results indicated that the MLCA-containing products that come into direct contact with the human body would require management through precise inspection and continuous monitoring considering EMPs of 5 ㎛ or less. Furthermore, TEM-EDS for asbestos analysis indicated that it could overcome the detection limits of XRD and PLM analyses for short or thin asbestos fibers, thereby improving the precision and accuracy of asbestos analysis.

키워드

과제정보

이 연구는 한국환경공단 "석면함유가능물질 관리 체계 마련을 위한 용역"사업의 재정지원으로 수행되었습니다. XRD 분석(정경갑 연구원, 전남대학교 공동실험실습관), PLM 분석(이연성 연구원, 한국건설생활환경연구원), TEM-EDS 분석(곽주현 연구원, 한국화학융합시험연구원 자원순환센터)에 도움을 주신 연구원들께 감사드립니다.

참고문헌

  1. Addison, J. (1995) Vermiculite: A review of the mineralogy and health effects of vermiculite exploitation. Regulatory Toxicology and Pharmacology, v.21(3), p.397-405. doi: 10.1006/rtph.1995.1054
  2. Adib, G., Labreche, F., De Guire, L., Dion, C. and Dufresne, A. (2013) Short, fine and WHO asbestos fibers in the lungs of quebec workers with an asbestos-related disease. American Journal of Industrial Medicine, v.56(9), p.1001-1014. doi: 10.1002/ajim.22180
  3. Amandus, H.E. and Wheeler, R. (1987) The morbidity and mortality of vermiculite miners and millers exposed to tremolite-actinolite, part II: mortality. American Journal of Industrial Medicine, v.11(1), p.15-26. doi: 10.1002/ajim.4700110103
  4. Antao, V.C., Larson, T.C. and Horton, D.K. (2012) Libby vermiculite exposure and risk of developing asbestos-related lung and pleural diseases. Current Opinion in Pulmonary Medicine, v.18(2), p.161-167. doi: 10.1097/MCP.0b013e32834e897d
  5. Anthony, J.W., Bideaux, R.A., Bladh, K.W. and Nichols, M.C. (2001) Eds., Handbook of Mineralogy. Mineralogical Society of America, Chantilly, VA 20151-1110, USA. http://www.handbookofmineralogy.org/.
  6. Baris, Y.I., Sahin, A.A. and Erkan, M.L. (1980) Clinical and radiological study in sepiolite workers. Archives of Environmental Health: An International Journal, v.35(6), p.343-346. doi: 10.1080/00039896.1980.10667517
  7. Becklake, M.R. (1976) Asbestos-related diseases of the lung and other organs: their epidemiology and implications for clinical practice. American Review of Respiratory Disease, v.114(1), p.187-227. doi: 10.1164/arrd.1976.114.1.187
  8. Cattaneo, A., Somigliana, A., Gemmi, M., Bernabeo, F., Savoca, D., Cavallo, D.M. and Bertazzi, P.A. (2012) Airborne concentrations of chrysotile asbestos in serpentine quarries and stone processing facilities in Valmalenco, Italy. Annals of Occupational Hygiene, v.56(6), p.671-683. doi: 10.1093/annhyg/mer119
  9. Choi, Y.H., Kim, N.J., Hwang, B.G., Lee, J.H. and Sun, Y.S. (2012) Alteration of chrysotile with heat treatment. Journal of the Korean Society for Environment Analysis, v.15(1), p.42-45.
  10. Dana, J.D., Klein, C. and Hurlbut, C.S. (2002) Mineral science. Wiley.
  11. Deer, W.A., Howie, R.A. and Zussman, J. (2013) An introduction to the rock-forming minerals. Mineralogical Society of Great Britain and Ireland. doi: 10.1180/DHZ.28
  12. Dement, J.M., Kuempel, E.D., Zumwalde, R.D., Smith, R.J., Stayner, L.T. and Lommis, D. (2008) Development of a fibre size-specific job-exposure matrix for airborne asbestos fibres. Occupational and Environmental Medicine, v.65(9), p.605-612. doi: 10.1136/oem.2007.033712
  13. Evans, B.W., Hattori, K. and Baronnet, A. (2013) Serpentine: what, why, where?. Elements, v.9(2), p.99-106. doi: 10.2113/ gselements.9.2.99
  14. Gunter, M.E., Buzon, M.E. and McNamee, B.D. (2018) Current issues with the purported "asbestos" content of talc: Asbestos nomenclature and examples in metamorphic carbonate and ultramafic hosted talc ores. Transactions of the Society for Mining, Metallurgy and Exploration, v.344, p.15-24. doi: 10.19150/trans.8744
  15. Hwang, J.Y., Lee, H.M., Oh, J.H. and Park, G.N. (2011) Asbestos determination of some domestic building-materials using x-ray diffraction. Korean Journal of Mineralogy and Petrology, v.24(2), p.119-131. doi: 10.9727/jmsk.2011.24.2.119
  16. Hwang, J.Y. (2009) 국내 석면의 분석기술 및 연구 현황. 한국광물학회와 한국광해관리공단 주최의 2009년 춘계 석면 심포지엄 "석면의 물질적 본질과 그 오염방지 대책". p.39-45.
  17. Jang, H.S., Lee, T.H. and Kim, J.H. (2014) Asbestos management plan according to the investigation on the actual conditions of asbestos in public buildings. Journal of Korea Society of Environmental Administration, v.20, p.27-34.
  18. Kwon J., Seo, H.K., Kim, K.B. and Chung, E.K. (2013) Occupational exposure to airborne asbestos fibers in serpentine quarries and a steel mill. Journal of Korean Society of Occupational and Environmental Hygiene, v.23(1), p.35-40.
  19. Meeker, G.P., Bern, A.M., Brownfield, I.K., Lowers, H.A., Sutley, S.J., Hoefen, T.M. and Vance, J.S. (2003) The composition and morphology of amphiboles from the Rainy Creek Complex, near Libby, Montana. American Mineralogist, v.88(11-12), p.1955-1969. doi: 10.2138/am-2003-11-1239
  20. Ministry of Environment (2020) 가공.변형된 석면함유가능물질의 석면허용기준. Notification of Ministry of Environment 2020-266. 2020.
  21. Ministry of Environment (2018) 석면함유가능물질 조사.분석을 위한 시료채취 및 분석방법. Notification of Ministry of Environment 2018-23. 2018.
  22. Ministry of Labor (2008) 화학물질 및 물리적인자의 노출기준. Notification of Ministry of Labor 2008-26. 2008.
  23. Ministry of Employment and Labor (2020) 가공.변형된 석면함유 가능물질의 석면허용기준. Notification of Ministry of Labor 2020-517. 2020.
  24. Ministry of Employment and Labor (2022) 석면 조사 및 안전성 평가 등에 관한 고시. Notification of Employment and Labor 2022-9. 2022.
  25. Moatamed, F., Lockey, J.E. and Parry, W.T. (1986) Fiber contamination of vermiculites: a potential occupational and environmental health hazard. Environmental Research, v.41(1), p.207-218. doi: 10.1016/S0013-9351(86)80183-9
  26. Nam, I.S., Oh, H.J., Kim, J.M., Yang, J.S., Kim, J.S. and Sohn, J.R. (2015) Comparison of risk assessment criteria and distribution of asbestos-containing materials in school building. International Journal of Environmental Research, v.9(4), p.1341-1350.
  27. NIOSH, U. (1976) Revised Recommended Asbestos Standard. US Govt. Printing Office, Washington, DC. doi: 10.26616/nioshpub77169
  28. Rohl, A.N., Langer, A.M. and Selikoff, I.J. (1977) Environmental asbestos pollution related to use of quarried serpentine rock. Science, v.196(4296), p.1319-1322. doi: 10.1126/science.867030
  29. Rohs, A.M., Lockey, J.E., Dunning, K.K., Shukla, R., Fan, H., Hilbert, T., Borton, E., Wiot, J., Meyer, C., Shipley, R.T., LeMasters, G.K. and Kapil, V. (2008) Low-level fiber-induced radiographic changes caused by Libby vermiculite: a 25-year follow-up study. American Journal of Respiratory and Critical Care Medicine, v.177(6), p.630-637. doi: 10.1164/rccm.200706-841OC
  30. Sakai, K., Hisanaga, N., Kohyama, N., Shibata, E. and Takeuchi, Y. (2001) Airborne fiber concentration and size distribution of mineral fibers in area with serpentinite outcrops in Aichi Prefecture, Japan. Industrial Health, v.39(2), p.132-140. doi: 10.2486/indhealth.39.132
  31. Song, S.W., Chung, Y.H. and Han, J.H. (2013) Asbestos analysis of China sepiolite by transmission electron microscopy. Journal of Korean Society of Occupational and Environmental Hygiene, v.23(3), p.205-211.
  32. Sullivan, P.A. (2007) Vermiculite, respiratory disease, and asbestos exposure in Libby, Montana: update of a cohort mortality study. Environmental Health Perspectives, v.115(4), p.579-585. doi: 10.1289/ehp.9481
  33. Suzuki, Y., Yuen, S.R. and Ashley, R. (2005) Short, thin asbestos fibers contribute to the development of human malignant mesothelioma: pathological evidence. International Journal of Hygiene and Environmental Health, v.208(3), p.201-210. doi: 10.1016/j.ijheh.2005.01.015
  34. U.S. FDA (Food and Drug Administration) (2020) Testing Methods for Asbestos in Talc and Cosmetic Products Containing Talc [Docket Co. FDA-2020-N-0025]
  35. Yada, K. (1971) Study of microstructure of chrysotile asbestos by high-resolution electron microscopy. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography. v.27(6), p.659-664. doi: 10.1107/S0567739471001402