과제정보
이 논문은 2023학년도 경북대학교 연구년 교수 연구비에 의하여 연구되었음
참고문헌
- Altunkaynak, A. (2007) Forecasting Surface Water Level Fluctuations of Lake Van by Artificial Neural Networks, Water Resour. Manage, v.21, p.399-408. https://doi.org/10.1007/s11269-006-9022-6.
- Buck-Sorlin, G. (2013) Process-based Model. In: Dubitzky, W., Wolkenhauer, O., Cho, KH., Yokota, H. (eds) Encyclopedia of Systems Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9863-7_1545.
- Changnon Jr., S.A. 1987. An assessment of climate change, water resources, and policy research. Water Int., v.12, p.69-76. https://doi.org/10.1080/02508068708686570
- Cho, K., van Merrienboer, B., Bahdanau, D. and Bengio, Y. (2014) On the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259. https://doi.org/10.3115/v1/W14-4012
- Clifton, C. (2010) Water and climate change: Impacts on groundwater resources and adaptation options, Water Working Notes, Note No. 25, June 2010, World Bank Group.
- Coulibaly, P., Anctil, F., Aravena, R. and Bobee, B. (2001) Artificial neural network modeling of water table depth fluctuations. Water Resour. Res., v.37(4), p.885-896. https://doi.org/10.1029/2000WR900368
- Cuthbert, M.O. (2010) An improved time series approach for estimating groundwater recharge from groundwater level fluctuations. Water Resour. Res., v.46, W09515. https://doi:10.1029/2009WR008572.
- Dai, W., Chen, Y., Xue, G.R., Yang, Q. and Yu, Y. (2008) Translated Learning. Proc. 21st Ann. Conf. Neural Information Processing Systems.
- Djurovic, N., Domazet, M., Stricevic, R., Pocuca, V., Spalevic, V., Pivic, R., Gregoric, E. and Domazet, U. (2015) Comparison of Groundwater Level Models Based on Artificial Neural Networks and ANFIS. The Scientific World Journal, vol. 2015, Article ID 742138, 13 pages. https://doi.org/10.1155/2015/742138.
- Emamgholizadeh, S., Moslemi, K. and Karami, G. (2014) Prediction the Groundwater Level of Bastam Plain (Iran) by Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS). Water Resour. Manage, v.28, p.5433-5446. https://doi.org/10.1007/s11269-014-0810-0.
- Gharehbaghi, A., Ghasemlounia, R., Ahmadi, F. and Albaji, M. (2022) Groundwater level prediction with meteorologically sensitive Gated Recurrent Unit (GRU) neural networks. J. Hydrol., v.612, 128262, ISSN 0022-1694, https://doi.org/10.1016/j.jhydrol.2022.128262.
- Gong, Y., Zhang, Y., Lan, S. and Wang, H. (2016) A Comparative Study of Artificial Neural Networks, Support Vector Machines and Adaptive Neuro Fuzzy Inference System for Forecasting Groundwater Levels near Lake Okeechobee, Florida. Water Resour. Manage, v.30, p.375-391. https://doi.org/10.1007/s11269-015-1167-8.
- Green, T.R. (2016) Linking Climate Change and Groundwater. In: Jakeman AJ, Barreteau O, Hunt RJ, Rinaudo JD, Ross A (eds) Integrated Groundwater Management. Springer, Cham, pp.97-141. https://doi.org/10.1007/978-3-319-23576-9_5.
- Hare, D.K., Helton, A.M., Johnson, Z.C., Lane, J. and Briggs, M. (2021) Continental-scale analysis of shallow and deep groundwater contributions to streams. Nat. Commun., v.12, 1450. https://doi.org/10.1038/s41467-021-21651-0.
- IGRAC (2020) Groundwater monitoring programmes: A global overview of quantitative groundwater monitoring networks.
- Jafari, M.M., Ojaghlou, H., Zare, M. and Schumann, G.J. (2021) Application of a Novel Hybrid Wavelet-ANFIS/Fuzzy C-Means Clustering Model to Predict Groundwater Fluctuations. Atmosphere, doi:10.3390/atmos12010009.
- Jahanara, A.A. and Khodashenas, S.R. (2019) Prediction of Ground Water Table Using NF-GMDH Based Evolutionary Algorithms. KSCE J. Civ. Eng., v.23, p.5235-5243. https://doi.org/10.1007/s12205-019-0804-9.
- Jeong, J. and Park, E. (2017) A shallow water table fluctuation model in response to precipitation with consideration of unsaturated gravitational flow. Water Resour. Res., v.53(4), p.3505-3512. https://doi.org/10.1002/2016WR020177
- Jeong, J. and Park, E. 2019. Comparative applications of data-driven models representing water table fluctuations. J. Hydrol., v.572, p.261-273. https://doi.org/10.1016/j.jhydrol.2019.02.051
- Kingma, D.P. and Ba, J. 2015. Adam: A method for stochastic optimization. International Conference on Learning Representations. https://doi.org/10.48550/arXiv.1412.6980
- Kisi, O. and Shiri, J. (2012) Wavelet and neuro-fuzzy conjunction model for predicting water table depth fluctuations. Hydrology Research, v.43, p.286-300. doi: 10.2166/nh.2012.104b.
- Kombo, O.H., Kumaran, S., Sheikh, Y.H., Bovim, A. and Jayavel, K. (2020) Long-Term Groundwater Level Prediction Model Based on Hybrid KNN-RF Technique. Hydrology, v.7, 59. https://doi.org/10.3390/hydrology7030059.
- Li, X., Ma, X., Xiao, F., Xiao, C., Wang, F. and Zhang, S. (2022) Time-series production forecasting method based on the integration of Bidirectional Gated Recurrent Unit (Bi-GRU) network and Sparrow Search Algorithm (SSA). J. Pet. Sci. Eng., v.208, Part A, 109309, ISSN 0920-4105, https://doi.org/10.1016/j.petrol.2021.109309.
- Mahmoud Khaki, M. Khaki, Ismail Yusoff, I. Yusoff and Nur Islami, N. Islami. (2015) Simulation of groundwater level through artificial intelligence system. Environ. Earth Sci., v.73, p.8357-8367. doi: 10.1007/s12665-014-3997-8.
- Maier, H.R. and Dandy, G.C. (1996) The use of artificial neural networks for the prediction of water quality parameters. Water Resour. Res., v.32, p.1013-1022. https://doi.org/10.1029/96WR03529
- Maiti, S. and Tiwari, R.K. (2014) A comparative study of artificial neural networks, Bayesian neural networks and adaptive neuro-fuzzy inference system in groundwater level prediction. Environ. Earth Sci., v.71, p.3147-3160. https://doi.org/10.1007/s12665-013-2702-7.
- Marchant, B.P. and Bloomfield, J.P. (2018) Spatio-temporal modelling of the status of groundwater droughts. J. Hydrol., v.564, p.397-413. https://doi.org/10.1016/j.jhydrol.2018.07.009
- Mirarabi, A., Nassery, H.R. and Nakhaei, M. (2019) Evaluation of data-driven models (SVR and ANN) for groundwater-level prediction in confined and unconfined systems. Environ. Earth Sci., v.78, 489. https://doi.org/10.1007/s12665-019-8474-y.
- Moosavi, V., Vafakhah, M., Shirmohammadi, B. and Ranjbar, M. (2014) Optimization of Wavelet-ANFIS and Wavelet-ANN Hybrid Models by Taguchi Method for Groundwater Level Forecasting. Arab J. Sci. Eng., v.39, p.1785-1796. https://doi.org/10.1007/s13369-013-0762-3.
- Nadiri, A., Naderi, K., Khatibi, R. and Gharekhani, M. (2019) Modelling groundwater level variations by learning from multiple models using fuzzy logic. Hydrol. Sci. J., v.64(2), p.210-226. doi: 10.1080/02626667.2018.1554940.
- Pan, M., Zhou, H., Cao, J., Liu, Y., Hao, J., Li, S. and Chen, C. (2020) Water Level Prediction Model Based on GRU and CNN. IEEE Access, v.8, p.60090-60100. doi: 10.1109/ACCESS.2020.2982433.
- Pan, S. and Yang, Q. (2010) A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng., v.22(10), p.1345-1359. doi: 10.1109/TKDE.2009.191.
- Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J. and Chintala, S. (2019) PyTorch: An imperative style, high-performance deep learning library. In 33rd Annual Conference on Neural Information Processing Systems, 1. doi: 10.48550/arXiv.1912.01703
- Peterson, T.J. and Western, A.W. (2018) Statistical interpolation of groundwater hydrographs. Water Resour. Res., v.54, p.4663-4680. doi: 10.1029/2017WR021838
- Pham, Q.B., Kumar, M. and Di Nunno, F. (2022) Groundwater level prediction using machine learning algorithms in a drought-prone area. Neural Comput. Applic., v.34, p.10751-10773. https://doi.org/10.1007/s00521-022-07009-7.
- Roberts, M.J., Braun, N.O., Sinclair, T.R., Lobell, D.B. and Schlenker, W. (2017) Comparing and combining process-based crop models and statistical models with some implications for climate change. Environ. Res. Lett., v.12(9), Article ID 095010, 2017. http://dx.doi.org/10.1088/1748-9326/aa7f33
- Seeboonruang, U. (2014) An empirical decomposition of deep groundwater time series and possible link to climate variability. Glob. Nest J., v.16, p.87-103. https://doi.org/10.30955/gnj.001244
- Shi, X., Fan, W. and Ren, J. (2008) Actively Transfer Domain Knowledge. Proc. European Conf. Machine Learning and Knowledge Discovery in Databases (ECML/PKDD '08), 342-357. https://doi.org/10.1007/978-3-540-87481-2_23
- Siebert, S., Burke, J., Faures, J., Frenken, K., Hoogeveen, J., Doell, P. and Portmann, F. (2010) Groundwater use for irrigation-A global inventory. Hydrol. Earth Syst. Sci., v.14, p.1863-1880. doi: 10.5194/hess-14-1863-2010.
- Sun, J., Hu, L., Li, D., Sun, K. and Yang, Z. (2022) Data-driven models for accurate groundwater level prediction and their practical significance in groundwater management. J. Hydrol., v.608, 127630. https://doi.org/10.1016/j.jhydrol.2022.127630.
- Swain, S., Sahoo, S., Taloor, A., Mishra, S. and Pandey, A. (2022) Exploring recent groundwater level changes using Innovative Trend Analysis (ITA) technique over three districts of Jharkhand, India, Groundwater for Sustainable Development, v.18, 100783, ISSN 2352-801X, https://doi.org/10.1016/j.gsd.2022.100783.
- Tao, H., Hameed, M., Marhoon, H., Zounemat-Kermani, M, Heddamm S, Kim, S., Sulaiman, S., Tan, M., Sa'adi, Z., Mehr, A., Allawi, M., Abba, S.I., Zain, J., Falah, M., Jamei, M., Bokde, N., Bayatvarkeshi, M., Al-Mukhtar, M., Bhagat, S., Tiyasha, T., Khedher, K., Al-Ansari, N., Shahid, S. and Mundher Yaseen, Z. (2022) Groundwater level prediction using machine learning models: A comprehensive review. Neurocomputing, v.489, p.271-308. https://doi.org/10.1016/j.neucom.2022.03.014
- Van Rossum, G. and Drake, F.L. (2009) Python 3 Reference Manual, Scotts Valley, CA: CreateSpace.
- Walker, G.R., Crosbie, R.S., Chiew, F.H.S., Peeters, L. and Evans, R. (2021) Groundwater Impacts and Management under a Drying Climate in Southern Australia, Water, v.13, 3588. https://doi.org/10.3390/w13243588.
- Wen, Q., Sun, L., Yang, F., Song, X., Gao, J., Wang, X. and Xu, H. (2022) Time series data augmentation for deep learning: A survey. arXiv preprint arXiv:2002.12478. https://doi.org/10.48550/arXiv.2002.12478
- Wu, W.Y., Lo, M.H., Wada, Y., Famiglietti, J., Reager, J., Yeh, P., Ducharne, A. and Yang, Z. (2020) Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers. Nat. Commun., v.11, 3710. https://doi.org/10.1038/s41467-020-17581-y.
- Wunsch, A., Liesch, T. and Broda, S. (2018) Forecasting groundwater levels using nonlinear autoregressive networks with exogenous input (NARX). J. Hydrol., v.567, p.743-758. https://doi.org/10.1016/j.jhydrol.2018.01.045.
- Xu, J., Wang, K., Lin, C., Xiao, L., Huang, X. and Zhang, Y. (2021) FM-GRU: A Time Series Prediction Method for Water Quality Based on seq2seq Framework. Water, v.13, 1031. https://doi.org/10.3390/w13081031.
- Yoon, H., Jun, S., Hyun, Y., Bae, G. and Lee, L. (2011) A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. J. Hydrol., v.396(1-2), p.128-138. https://doi.org/10.1016/j.jhydrol.2010.11.002
- Young, C., Liu, W. and Hsieh, W. (2015) Predicting the Water Level Fluctuation in an Alpine Lake Using Physically Based, Artificial Neural Network, and Time Series Forecasting Models. Math. Probl. Eng., doi: 10.1155/2015/708204.
- Yu, J., Zhang, X., Xu, L., Dong, J. and Zhangzhong, L. (2021) A hybrid CNN-GRU model for predicting soil moisture in maize root zone, Agric. Water Manag., v.245, 106649, ISSN 0378-3774, https://doi.org/10.1016/j.agwat.2020.106649.
- Zhang, J., Zhu, Y., Zhang, X., Ye, M. and Yang, J. (2018) Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas, J. Hydrol., v.561, p.918-929, ISSN 0022-1694, https://doi.org/10.1016/j.jhydrol.2018.04.065.
- Zhuo, H., Yang, Q., Hu, D.H. and Li, L. (2008) Transferring Knowledge from Another Domain for Learning Action Models. Proc. 10th Pacific Rim Int'l Conf. Artificial Intelligence. https://doi.org/10.1007/978-3-540-89197-0_115