DOI QR코드

DOI QR Code

A Study on Consumer Behavior Changes in Response to the Development of Non-Face-to-Face Restaurant Services

  • Gyu-Ri KIM (Department of Bioengineering, Major in Cosmetic Science, Eulji University) ;
  • Gyu-Ri KIM (Department of Food Science & Service, College of Bio-Convergence, Eulji University) ;
  • Seong-Soo CHA (Food Biotechnology Major, Eulji University)
  • 투고 : 2024.10.17
  • 심사 : 2024.11.05
  • 발행 : 2024.11.30

초록

This study investigates the evolution and impact of contactless dining services on consumer behavior in the food service industry. Catalyzed by rapid technological advancements and the COVID-19 pandemic, these services have become integral to restaurant operations, reshaping business models and fundamentally altering consumer eating habits. Through a comprehensive analysis of domestic and international case studies, this research elucidates the definition, development, and current state of contactless dining services. The findings reveal that these innovations offer significant advantages, including enhanced convenience, efficiency, and accessibility, leading to increased dining frequency and widespread adoption of digital ordering platforms. Consumers particularly value the temporal and spatial flexibility afforded by these services, enabling food ordering from any location at any time. However, the study also identifies persistent challenges, such as the diminution of human interaction and potential exclusion of digitally disadvantaged populations. To address these issues, the research suggests that restaurants must prioritize customer satisfaction through personalized experiences and intuitive user interfaces, while concurrently developing targeted strategies to accommodate elderly and less tech-savvy clientele. The study posits that ongoing technological innovation will continue to drive industry growth by facilitating increasingly customized services aligned with evolving consumer preferences. These insights provide a valuable framework for restaurant operators.

키워드

과제정보

This work was supported by the research grant of the KODISA Scholarship Foundation in 2024.

참고문헌

  1. Adak, A., Pradhan, B., & Shukla, N. (2022). Sentiment Analysis of Customer Reviews of Food Delivery Services Using Deep Learning and Explainable Artificial Intelligence: Systematic Review. Foods, 11(10), 1500. 
  2. Bezerra, I. N. (2020). Away-from-home food during coronavirus pandemic. Public Health Nutrition, 23(10), 1855-1855. 
  3. Chang, H., & Meyerhoefer, C. (2020). COVID-19 and the Demand for Online Food Shopping Services: Empirical Evidence from Taiwan. American Journal of Agricultural Economics, 103(2), 448-465. 
  4. Choi, J.-C. (2020). User Familiarity and Satisfaction With Food Delivery Mobile Apps. Sage Open, 10(4). https://doi.org/10.1177/2158244020970563 
  5. Choi, Mun. hee. (2023). Baemin Struggles to Maintain Market Share as Coupang Eats Gains Ground. Business Korea, Retrieved October 10, 2024 from https://www.businesskorea.co.kr/news/articleView.html?idxno=224299 
  6. Choe, J., Kim, J., & Hwang, J. (2021). Perceived risks from drone food delivery services before and after COVID-19. International Journal of Contemporary Hospitality Management, 33(4), 1276-1296. 
  7. Guy, G., Lee, F. C., Sunshine, G., McCord, R. F., HowardWilliams, M., Kompaniyets, L., Dunphy, C., Gakh, M., Weber, R., Sauber-Schatz, E., Omura, J., Massetti, G. M., Bailey, M., Brown, A., Cramer, R., Clodfelter, C., Davison, R., Dugmeoglu, S., Fitts, A., ... & Shelburne, J. T. (2021). Association of State-Issued Mask Mandates and Allowing On-Premises Restaurant Dining with County-Level COVID-19 Case and Death Growth Rates - United States, March 1- December 31, 2020. MMWR-MORBIDITY AND MORTALITY WEEKLY REPORT, 70(10), 350-354. 
  8. Hao, F., & Chon, K. (2021). Contactless service in hospitality: bridging customer equity, experience, delight, satisfaction, and trust. International Journal of Contemporary Hospitality Management, 34(10), 113-134. 
  9. Jeong, M., Kim, K., Ma, F., & Dipietro, R. B. (2021). Key factors driving customers' restaurant dining behavior during the COVID-19 pandemic. International Journal of Contemporary Hospitality Management, 34(2), 836-858. 
  10. Jin, N., Line, N. D., & Merkebu, J. (2016). Examining the Impact of Consumer Innovativeness and Innovative Restaurant Image in Upscale Restaurants. Cornell Hospitality Quarterly, 57(3), 268-281. 
  11. Jun, K., Yoon, B., Lee, S., & Lee, D. (2021). Factors Influencing Customer Decisions to Use Online Food Delivery Service during the COVID-19 Pandemic. Foods, 11(1), 64. 
  12. Karjaluoto, H., Shaikh, A., Leppaniemi, M., & Luomala, R. (2019). Examining consumers' usage intention of contactless payment systems. International Journal of Bank Marketing, 38(2), 332-351. 
  13. Kaswengi, J., & Lambey-Checchin, C. (2019). How logistics service quality and product quality matter in the retailer- customer relationship of food drive-throughs. International Journal of Physical Distribution and Logistics Management, 50(5), 535-555. 
  14. Khan, M. A. (2020). Technological Disruptions in Restaurant Services: Impact of Innovations and Delivery Services. Journal of Hospitality & Tourism Research, 44(5), 715-732. 
  15. Kim, S., Jang, S., Choi, W., Youn, C., & Lee, Y. (2021). Contactless service encounters among Millennials and Generation Z: the effects of Millennials and Gen Z characteristics on technology self-efficacy and preference for contactless service. Journal of Research in Interactive Marketing, 16(1), 82-100. 
  16. Kumar, S., Singh, B., Kumar, V., Chaudhuri, R., Chatterjee, S., & Vrontis, D. (2023). Taking flight with food: investigating the determinants of user acceptance toward drone-based food delivery services in India. British Food Journal, 126(3), 1217-1237. 
  17. Lee, Ye. Ji. (2024). Coupang Eats Moves to No. 1 in Customer Satisfaction and No. 2 in Market Share. Casenews, Retrieved October 10, 2024 from https://www.casenews.co.kr/news/articleView.html?idxno=16350 
  18. Leung, Y. L., Chan, R. L., Chiu, D. K. W., & Ruwen, T. (2023). Investigating the consumption behavior of young adults using online food delivery platforms during the COVID-19 pandemic. Aslib Journal of Information Management, None. 
  19. Li, M., Yin, D., Qiu, H., & Bai, B. (2021). Examining the effects of AI contactless services on customer psychological safety, perceived value, and hospitality service quality during the COVID-19 pandemic. Journal of Hospitality Marketing & Management, 31(1), 24 - 48. 
  20. Liang, J., Ke, J., Wang, H., Ye, H., & Tang, J. (2023). A Poisson-Based Distribution Learning Framework for Short-Term Prediction of Food Delivery Demand Ranges. IEEE Transactions on Intelligent Transportation Systems, 24(12), 14556-14569. 
  21. Lin, P. M., Au, W., & Baum, T. (2023). Service quality of online food delivery mobile application: an examination of the spillover effects of mobile app satisfaction. International Journal of Contemporary Hospitality Management, 36(3), 906-926. 
  22. Litchfield, I., Shukla, D., & Greenfield, S. M. (2021). Impact of COVID-19 on the digital divide: a rapid review. BMJ Open, 11(10), e053440. 
  23. Lord, C., Bates, O., Friday, A., McLeod, F., Cherrett, T., MartinezSykora, A., & Oakey, A. (2022). The sustainability of the gig economy food delivery system (Deliveroo, UberEATS and Just-Eat): Histories and futures of rebound, lock-in and path dependency. International Journal of Sustainable Transportation, 17(5), 490-502. 
  24. Mehrolia, S., Alagarsamy, S., & Solaikutty, V. M. (2020). Customers response to online food delivery services during COVID-19 outbreak using binary logistic regression. International Journal of Consumer Studies, 45(3), 396 - 408. 
  25. Nguyen, D., Leeuw, S. d., Dullaert, W., & Foubert, B. (2019). What Is the Right Delivery Option for You? Consumer Preferences for Delivery Attributes in Online Retailing. Journal of Business Logistics, 40(4), 299-321. 
  26. Park, Seul. Gi. (2024). No. 1 sniper is not immune...Coupang Eats shakes up the marketplace. Fntimes, Retrieved October 9, 2024 from https://www.fntimes.com/html/view.php?ud=202410070057541043dd55077bc2_18 
  27. Roy, S., Shekhar, V., Quazi, A. M., & Quaddus, M. (2020). Consumer engagement behaviors: do service convenience and organizational characteristics matter?. Journal of Service Theory and Practice, 30(2), 195-232. 
  28. Rombach, M., Kartikasari, A., Dean, D., Suhartanto, D., & Chen, B. T. (2023). Determinants of customer loyalty to online food service delivery: evidence from Indonesia, Taiwan, and New Zealand. Journal of Hospitality Marketing & Management, 32(6), 818-842. 
  29. Ryu, K., Lee, H., & Kim, W. (2012). The influence of the quality of the physical environment, food, and service on restaurant image, customer perceived value, customer satisfaction, and behavioral intentions. International Journal of Contemporary Hospitality Management, 24(2), 200-223. 
  30. Saad, A. (2020). Factors affecting online food delivery service in Bangladesh: an empirical study. British Food Journal, 123(2), 535-550. 
  31. Shah, A. M., Yan, X., & Qayyum, A. (2021). Adoption of mobile food ordering apps for O2O food delivery services during the COVID-19 outbreak. British Food Journal, 124(11), 3368-3395. 
  32. Shah, A. M., Yan, X., Shah, S. A. A., & Ali, M. (2020). Customers' perceived value and dining choice through mobile apps in Indonesia. Asia Pacific Journal of Marketing and Logistics, 33(1), 1-28. 
  33. Shroff, A., Shah, B. J., & Gajjar, H. K. (2022). Online food delivery research: a systematic literature review. International Journal of Contemporary Hospitality Management, 34(8), 2852-2883. 
  34. Stephens, J. D., Miller, H. N., & Militello, L. K. (2020). Food Delivery Apps and the Negative Health Impacts for Americans. Frontiers in Nutrition, 7, 14. 
  35. Tao, H., Sun, X., Liu, X., Tian, J., & Zhang, D. (2022). The Impact of Consumer Purchase Behavior Changes on the Business Model Design of Consumer Services Companies Over the Course of COVID-19. Frontiers in Psychology, 13, 818845. 
  36. Vo-Thanh, T., Zaman, M., Hasan, R., Akter, S., & Dang-Van, T. (2022). The service digitalization in fine-dining restaurants: a cost-benefit perspective. International Journal of Contemporary Hospitality Management, 34(9), 3502-3524. 
  37. Vu, H., Li, G., Law, R., & Zhang, Y. (2019). Exploring Tourist Dining Preferences Based on Restaurant Reviews. Journal of Travel Research, 58(1), 149 - 167. 
  38. Wang, X., Wang, L., Wang, S., Pan, J., Ren, H., & Zheng, J. (2023). Recommending-and-Grabbing: A Crowdsourcing-Based Order Allocation Pattern for On-Demand Food Delivery. IEEE Transactions on Intelligent Transportation Systems, 24(1), 838-853. 
  39. Wong, I., Huang, J., Lin, Z., & Jiao, H. (2022). Smart dining, smart restaurant, and smart service quality (SSQ). International Journal of Contemporary Hospitality Management, 34(6), 2272-2297. 
  40. Xiang, C., Zhou, Y., Dai, H., Qu, Y., He, S., Chen, C., & Yang, P. (2023). Reusing Delivery Drones for Urban Crowdsensing. IEEE Transactions on Mobile Computing, 22(5), 2972-2988.